US 20220198752A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0198752 Al

Brooks et al.

(43) Pub. Date:

Jun. 23, 2022

(54)

(71)

(72)

@
(22)

(60)

SYSTEM AND METHOD FOR IMPROVED
RENDERING OF COMPUTER GRAPHIC
MODELS

Applicant: TAKE-TWO INTERACTIVE
SOFTWARE, INC., New York, NY
(Us)

John Brooks, New York, NY (US);
Shawn Best, New York, NY (US); Alex
Pepper, New York, NY (US); Mike
Krazanowski, New York, NY (US);
Douglas E. Snyder, New York, NY
us)

Appl. No.: 17/555,280
Filed: Dec. 17, 2021
Related U.S. Application Data

Inventors:

Provisional application No. 63/127,913, filed on Dec.

18, 2020.

1000 \\

D

(52)

&7

Publication Classification

Int. Cl1.

GO6T 17/20 (2006.01)

Go6T 9/00 (2006.01)

GO6T 1/60 (2006.01)

U.S. CL

CPC GO6T 17/205 (2013.01); GO6T 9/00

(2013.01); GO6T 2210/56 (2013.01); GO6T
2210/36 (2013.01); GO6T 1/60 (2013.01)

ABSTRACT

Systems and methods applicable, for instance, to using
continuous levels of detail (CLODs) in connection with
computer graphic models. Distinct levels of detail (LODs)
can be generated, floating point LOD (fLOD) values can be
calculated, and interpolated [LODs can be generated. Further,
LOD display can occur.

Generate Discrete
LOD

b 4

1001

Select f1.OD

Vertex Interpolation
and Projection

1602

1003

Patent Application Publication

1000 \’

Jun. 23,2022 Sheet 1 of 23

Generate Discrete
LOD

2
g =
g =
=8
2%
5.e,
= ©
Sl
R=gn
52
F)w
>
A
N
o
S
oo
Q
g
'
[
o
A
L
93]
A
—
o
S

US 2022/0198752 Al

Fig. 1A

US 2022/0198752 Al

Jun. 23,2022 Sheet 2 of 23

Patent Application Publication

¢~ ‘0 ‘Lzt 1 'lgzT’8zT’66zE YIUTITOTTITO 900000007 “9TITTITIT] '3
VIS ‘e 1 '088T/8ZT/Z9Ti Y{UOTTITOOT 00000007 “90T000TOT] S
[gz ‘0 ‘ge 1 ‘l9g1’82T/¢9Tl ‘{90GTITOQOT‘90000000T ‘9TT000TOT! 9
ez ‘0 ‘¢ 1 ‘1L8T’82T%9Ti ‘{9TGTITOQT‘0000000T ‘900T00TOT! G
ez "o ‘ec 1 flgsT’gzT/LeTl ‘I4TIOTTIOOL‘A0000000T ‘ATITOOTIOT! %
ot ‘0 ‘pzi~} ‘lgetr’gei’t 1! TOTO00T 'A0000000T “AT0000000] Pe
[w ‘0 ‘f 7oflzet'ezr Tt A 0T0000T 'A0000000T “UTI0O0000T] *Z
[e ‘0 ‘L Iofl1eT’ezT STl TO0000T 'A0000000T “UTTITO0O00T] o1
[t~ 7o ‘q PoflezTfgzr et IQTITTIITIONNO000000T“AT0TO000T] 20
[Z % '¥iTspon (20720 X01 o8g [Z0 20 'X0iAaeuty HRQIBA
SBOTIIDA LZTIURND TSPORW
el 1Tl 601
g .77 = snIpeysisydgbuipunog
Lo — 0'p57 = STEOSTSPOR
v '8 ‘1] v \
e 79 ‘21 £ SOl
L 76 ‘9 i Z
(9 s ‘v | T
lz "1 701 0
SSOTLIOA STbuvTI]
SoThUueTI] TODOW
[y
i6~ ‘0 fuzT i g
o ‘o ‘vl L
gz ‘0 ‘ge i 2
ez ‘0 ‘9] °G
itz ‘o ‘6] B4
o1 ‘o LTI - g
7 0 ‘c i °Z
(€ 0 ‘d i °T
{1~ ‘0 ‘S i ‘0
[ZR'%] XSIISA
\\\\\\ $8211I9A ISDOW
101 TOPORW oTdwexyg

US 2022/0198752 Al

Jun. 23, 2022 Sheet 3 of 23

Patent Application Publication

VT 814

NHN// €1 9 S$9OTITISA ASTT POISPIO 40T
//// \\\\\\ 7 $9TDURTIL 1STT PSIASPIO AOT
T s1C
[% ‘¢] T oTHURTIL POIASPIO <- (v ‘g ‘1] &7
{z ‘1 ‘0 1 :0 orbPuRTIL PBIOPIQ <- (¢ ‘9 ‘2] S
\\\\\ pasde11o)d [‘s ‘9] 'z
1z \\\\\\ pesdetton [9 ‘G ‘p] :1
11T pesdertod [z ‘T ‘0] 0 —
ITnsay SeDTIILA oTbueTal 60¢C
SOThURTIL TOPOW
[s- ‘0 ‘0zt 1 ‘lozT'szTr'8vz] ‘l9000TTTIIO‘90000000T“9000TTIITIT] 8
¥z ‘0 'ze 1 '{zsT’82T’09T] {A000TTOO0T ‘A0000000T 00000TOT] L
(v 0 ‘ze 1 flzsT821109T] YlA000TTIOOT‘G0000000T ‘400000TOT] 9
¢z ‘0 'ze 1 f{zet1’82T14091] ‘lU000TTOO0T ‘90000000T d00000TOT] =6
[?z ‘0 ‘ze 1 {Z8T’82T109T1 ‘lH000TTOO0T U0000000T ‘A00000TOT] 9
(g 0 ‘gz1-1 *{9c¢t’82T1‘0 1 ‘[U000T000T°40000000T 000000001 ¢
(o ‘0 ‘0] “lsz1’821’8211 “[90000000T 900000001 90000000T] :¢
(o ‘0 “0] \hmmﬁ gzT18z1] ‘1900000007 90000000T 900000001 *1
[g- ‘0 0 1 ‘lozt’g8z1’821T] “{900QOTTITIOC YOCO0000T 'A0000000TT 10
[z 'x’X]1ToPOoW [Z0 /20 'X0] TRUITOSQ [ZD/RD ‘XDl Axeutg XKOYADA
Lot $0¢C \\\\\\Qoooﬂﬂﬂﬂﬂ = € >> qQITITTITTT = SBWUOTSTO®Ig ////,mom
10T ¢ QOTIDUTASTIA

qc 31

US 2022/0198752 Al

Jun. 23,2022 Sheet 4 of 23

g S8OTIASA ISTT PRISPIC AT
p soTbuRTIL 3ISTT PSI2WPIO JOT

—

T 9¢T

~
-

¢] :1 stbuetil peIspIO <- [¥ ‘¢ ‘1] 'F
‘0] 0 eTbuETIl PRILPIC <~ e 9 7] S
pasde11od (L ‘¢ "9 1 YT —
‘G] ¢ eTbueTil PRILPIC <~ [o ‘¢ ‘%] °T Lee
‘9 Tz orburtiay peIepID <- [z ‘1 ‘0] 10
\\\\\\ 3Tnsayg Se0T3I9A oTburTIj
soThuRTI] TOPOW
{s- “0 ‘pzT 1 ‘lozt’‘sZT‘zsz] ‘I900OTITTIO’C0000000T‘GOOTITTITITIL 8
gz 0 ‘ze 1 ‘0961782170911 ‘[CU0OTTIOOT ‘d0000000T ‘A00000TI0T] L
gz ‘0 fze 1 “locT’gZT'09T] ‘[A00TTITIOOT’A0O000000T A00000TOT] 19
[gz 0 ‘9¢ 1 “[9618Z1'%91] ‘[A00TTIOOT’U0000000T ‘A00TO0TOT] 6
vz ‘0 o9] “[zg1’8Z1’%91T] ‘[4000TIOOT‘A0000000T GO0TO0TOT] ¥
[8 ‘0 ‘gz1-1 “‘logt1’gz1’0 1 ‘[9000TO00T’90000000T ‘d00000000] :¢
[y ‘0 0 I lzet’gzr’gztl “[A00T0000T ‘90000000T7°90000000T1 2
{o ‘0 ‘y I f{gzT8zT1 28Tl “L90000000T A0000000T ‘A00TO000T] T
lvg- ‘0 7z I Iwzr’gzr’zet] “{90O0TTTTITIO ‘A0000000T A00TO000T] =0
[Z/X'X]T2POor [Z0/ 20 XD] TRWTORQ [Z0/A0 /XD AxeuTyg XSJIBA
(Y#d ¢£TC \\\\\\ GOOTITTITIT = Z >> dITITITITT = MSEWUOISID®iIg ////,Mmm
612 Z dOTIDUTISIO

Patent Application Publication

US 2022/0198752 Al

Jun. 23,2022 Sheet 5 of 23

Patent Application Publication

Lye

574

0T 31

-

~

e i B B i
O W N Y
~ o~
<
~
v O M
[

0¢
8¢
8¢
9¢
0T

e B e W e B e W e I e T

N.I
[z

eve

0 ‘9z1 1 ‘fzzt’sz1i’vezl !
‘0 ‘g¢ 1 ‘lgsT'82T'Z9T1
0 ‘pe 1 ‘fogt’szT1’291] !
0 ‘o 1 ‘l9gt’gz1’VOTl !
0 ‘e] ‘lwst“gszi‘goetl
‘0 ‘gz1-1 ‘lggtr’gzr‘o 1
0 ‘Z 1 ’lzet‘szT 0Tl !
‘0 ‘9 I ‘logt’sz1’pET] !
‘0 ‘B] *lgzi‘gz1'‘zeTl
‘L 'X]TOPON [Z0/20/x0] TUTOSQ

\ \

\

LET

6 SOOTIIABA ISTT DBISPIO 0T
G sSTbuURTIL ISTT PIISPIO UOT

~
~

1 1 eibuetay peaepi0 <- v 78 ‘1 1 iy

10 oTbueTaAL PBISPAD <- fe ‘9 'z 1 i€

] 1y oTbueTi] PBIIPIQ <- fL s ‘9 1 1z

¢ oTbueTiy PSISPIO <- fs ‘s ‘%] T

¢ otbuetay perspio <- tz ‘1 ‘0 1 0
ATnsey S20T3I8A STbueTi]

seThuURTI TOPCOW

[A0TOTTITTIO ‘90000000 T'AOTTITTITIT]
[AOTTTTOOT 0000000T “A0TO00TOT]
[AOOTTTOOT “A0000000T “AOTO00TOT]
[A00TTTOOT A0000000T “d00TO0TOT]
[G0TOTTOO0T “A0000000T “90TTO0TOT]
[G0T0TO00T “T0000000T 'A00000000]
[900T0000T ‘A0000000T “90TO0000T]
[A0TO0000T 90000000 T A0TTIO000T]
[FOTTTTITITO‘90000000T “A00TO000T]
[2020/X0)1 AzeuTg

N s O~

e ee se s

(]

XO2IBA

—

SBOTIISN rauend JqoT

344 GOTITITIITI = T >> UITTITITIT = SEHuUOTsIOsld

T AOTIDPUTISTA

v

6¢T

US 2022/0198752 Al

Jun. 23, 2022 Sheet 6 of 23

Patent Application Publication

acz 9

~
oY e sy

-~

-~

-

~

-~

~

6 S9DTIIASA ISTT PLIASPIO 0T
G s2T7hURTIL ISTT P2RIASPIC AQT

—]

¢] T orbueTiy pPOISPIO <- (¥ ‘@ ‘T 1 &7

‘0] 1p eTbuetIil POISPID <- ¢ 79 ‘¢ 1 S

‘T 1 'y oTHUBRTIL pSILPIO <- [s ‘9] 1z

‘g 1 ¢ erbuetil PRISPID <- [g ‘¢ ’% 1 ° 1

‘g] tz oTbueTIL PRISPIO <~ [z ‘1 ‘0] 10

aTnssy S80TAIBA oTbueTal
SoThURTIL ToPOW

[s- 0 ‘rz1 1 ’lezifszifsszl IOUTIOTTITITO ‘GOOO000OT “ATTITITITIT! :8
fog ‘0 ‘g1 ‘lg51’82T’Z37T] ‘{ADTTIITOOT“Ad0000000T COTO00TOT] L
sz ‘0 ‘ge 1 “l[961/8zZ1¢9T] ‘[AQOTTITOOT/A0000000T “9TT000TOT] 9
ez ‘0 ‘9¢] ‘[LeT’8ZT17%9T] ‘{ATOTTITOO0T ‘A0000000TC00TO0TIOT] 6
ez 0 ‘6 1 ‘lgg1’g8z1/L9T] ‘IATTOTIOOT'C0000000TATTITOOTIOT] ¥
ot ‘0 1z1-1 ‘isct’8z1’T 1 ‘{40TOTO00T‘A0000000T AT0000000] *¢
[v 0 ‘e I “fzer’gzr’T1eT] “1400TO000T 00000001 ATTIO0000T] 2
[e ‘0 ‘L I 7l1e178216eT1l ‘[OUTIOO000T ‘G0000000T ‘AT TITOO00T] 1
[1- ‘0 g I lezr’gzr’eet] “{ATITTITITTITO‘C0000000T 'ATOTION00T] 0
[Z'X'X]ToPOR [ZO XD X0] TRWITOSQ [Z0 /A0 ‘XDl Axeutg XBFIDA

~ ~

§sT 344

e

174

GTITTITTITITT

S8OTIITDA rauend 4ot

= 0 >> qQIITTITIT = AMSPHUOISTIO®Id

0 JOTIDUTISI]

T /ST

16¢

US 2022/0198752 Al

Jun. 23,2022 Sheet 7 of 23

Patent Application Publication

10 77

8 ‘0 ‘ge
@ \O sm
[Z2/X‘X]TopOon

ez 70 “6€
[¢s- ‘0 LTt
(¢ D ‘L
for ‘0 LTI
[

[

9 4
SBOTIIDA SoTHUBTIL

23
aoT

otdel doT

s v "¢ 1]
fz 't ‘0 1
SBOTIISA

T~

L 0¢
0
sThuRTI]

18T oTbueTay PRISPIC

~
I~
s}
ot
et
-

-
<

-
oy
e}
N
~

-
L0
—

~

~

O N8N
vt et et e et
~
)

o

Lo

P
~

‘€91]
‘g1 1ET]
A0 XGlTeWTOSQ

[N

an B TR o S B I
~
[soleolEve RN o N]

{ATIOTITOOT ‘900000001 9TITOOTOTE
[ATTOITTI0’A0000000T “9TTTTITITT] ¢
[ATT00000T ‘90000000T/ATTIOO00T] ¢
[G0T0T000T/A0000000T “9T0000000) ¢
[O00TTTOOT Q0000000 T/ATTO00TOT]) &
[G00TO000T ’A0000000T AT TOO00DTT 0

AERTS

— Oy)

[2020‘X0] Aaeutg X23IBA

QST XDIISA Umﬁwwuo

o
>
P

V¢ 81

q¢ 9

US 2022/0198752 Al

9 Z ‘e

en 8 7 “Z
“ SaDTIISA SeTbhuRTIil aoT
- oTURl 40T
Ln_lw /
2 fT 'L g] e
75 o “¢ 9 | 1z ite
N is ‘v ‘¢] i1
S tz 1 ‘0 1 0
o $80TI3IsA SThurII]
L 1817 aTbuBRTIl pPRILSPIC
=
=
J

0 —t ez ‘0 ‘9¢ 1 Y{LST8ZT¥9Tl YIGTIOQITIOO QO000000T ‘900TI00T0T] L
m £ [1- ‘0 ‘g I “lezr’gzT’cetd lOTTTITTTIOCOQCO000T ‘ATOTIN000T] ‘9
.m iz “0 ‘6 1 IgsT8ZTLaT] YIYITIOTIOOTA0000000T “YITITCOTIOT] ‘g
.m [6~ 7“0 ‘tzr l ’lgzi’gzi’ssz]l IGQTTOTTITIOCOOCOQCOT'ATITTITITL] ip
w (¢ Q0 ‘L J of{1er/g8z18¢7] [GTITO0000T /00000001 /AT TTC000T] g
=] (g1 ‘0 ‘Lzi~1 flectfezi’t 1 YlAGTOIBO00T/H0000000T ‘ATCO00000] 7
m gz ‘0 ‘g 1 {9gTRZTAET] [900TTIT00T ' a0000000T ‘AT TO00T0T] ‘1
.m [v ‘0 ‘c 1 ’lze182171¢1] [GO0TO000T H0000000T “ATTO0000T] 0
= (2 X’} 1oPpOoR [Z0 XD %XD]TewTons(y (2020 %0) Lxeutg X@3I24
S 38T XIAILA PRISPIO
-
~N
=
2 _
g 60€

D¢ 81

US 2022/0198752 Al

ISTT XOJIDA POIBPIO

SIe

9 zZ tg
8 i A
6 g H
Nw Se0T1ISA SoTbuUeTIL aoT
cm °TgrL dO1
9 /
< g ‘4 ‘1) 1y L1E
m (T ‘2 ‘s 1 ¢
o ¢ ‘9 1 A
mm (s s ‘¢] 1
Q (z 1 ‘01 0
e sadT1I9A oTbueTil
AM i\\\\\l\i\i\i\\\l\\l&\k\\\}\\\\\tl}\\\ 1STT oTbueta]l psIspiQ
=
J] 4 1] 4 1 4 4 / .
€1¢ foe 0 pe 1 ‘[g8gT’821’Z9Tl ‘[A0TTIITOOT“90000000T’AOTO0OTOT] 8
. fez ‘0 ‘9¢ 1 “ILST 82T %9T] ‘[ATOTTTOOT AD000000T ‘900TO0TOT! 2L
= [1- ‘0 ‘G I flrzt’gzr’ect] ‘IATTITITIOA0000000T ATOIO000T] 9
m ez ‘0 ‘6 1 ‘[G8T’8ZTL9T] ‘[ATT0TTOOT’A0000000T AdITTOOTOT] :¢
mm fg- ‘0 ‘tzT 1 “lgzTi8zr‘csZ] ‘[ATTOTTITIO‘A0000000T“IUTITTITITIT] ¥
“m (¢ ‘0 ‘L I fl1e1’82T/6ET] “[ATTO0000T U0000000T ATTTION00T] *¢
= ot ‘0 “LzT-1 I8eT 8ZTT 1 ‘IY0TOTO00T‘A0000000T ‘AT0000000] =2
,m fsz ‘0 ‘g 1 ‘f9g1’871’¢9T]l ‘[ADOTITTOOT“I00CO0000T ATTIO0OOTOT] T
5 [‘0 ‘¢ I flzet'gzT/1€T! “[900TOO00T ‘A0000000T “ATTO0000T] =0
mw [2/2'X] ToPOW [Z20X0'xD] 1eWITO2Q [Z20X0 /X0l Aaeutyg XO3IBA
[="
«
~N—
=
&
o]
=W

qg 914

US 2022/0198752 Al

3 4 i¢

8 iz 4

6 g 1T

6 g 10
Q SR0TITHA SeThuvTIlL aoT
S o~
o sTgel aol
= T cze
= tg "¢ 1] "y
@ £ £ v~
& {1 ‘L *¢] 1g
72 0 ’¢ ‘9 1 1z

£ £ -
n :.w \.w. ~m] ”M
< fz 1 "0 1 20
o sesIlIss oI1burTal
.J 1sTT 9TburTil PLISPIQ
=
=
= Jp— [og 0 ‘v 1 ‘I88T/82T°291) ‘{A0TITIOOT’90000000T ‘A0TO00TOTY ¢
oIt (67 ‘0 ‘sg 1 ‘[LST’87T vmﬂ_ ‘[GTOTTITO0T ‘A0000000T ‘G00TO0TOT] ¢

s [1- 0 'G Poflezr’gerieet) “LQTTTTITIONGO000000T ‘ATIOT0000T] o
.m ltz 0 ‘6 1 ‘lggrgzTiot]l JIUTIOTIOOT‘A0000000T/ATITTIOOIOTL 6
= [g- ‘0 ‘Lzt b ‘lezrieziissz) ‘I9TITOTTITO’GOQ00000T ‘ATTTITITIT! %
w {¢ 0 ‘L Tofiret‘gziisetl ‘IATT00000T ‘900000001 ‘AT TT0000TY ¢
A ot 79 rezT-1 ‘lscr’ezr’t 1 ‘fO0TOTIOCQTA0000000T ‘ATOC00000) 7
s [gz ‘0 ‘e 1 flocTfgzr‘cotTl ‘lA0QTITIOOT Y0000000T ‘ATTI000TI0TY T
.m [y ‘0 ‘g Toffzersegzrterl “LO00TI0000T “G0000000T *UTTO0000T] 0
= {75 %] Tepon (2020 /'%X0] TRuT28g (2072001 Axeutg WORIDA
W AETTY HOQADA ﬁ@u@%ﬁ@
-
~N
=
5
& 1Tt

US 2022/0198752 Al

Jun. 23,2022 Sheet 11 of 23

Patent Application Publication

T - SQUTIPUTISTIA = JOTF
}
(T ~ SCOTIDUTISIA) < Q0TI FT ©ST® A
{
0 = 4013
}
0 > qo1F IT _|

SOy
////// (sTexTg3TUnzIURND) ZBOT = GOTF
LOY

////// BTRIGTBPOW / 2ZTSTBXTIIUDDIDG 4 qAUeIXFIUend = sTaxXTJiTUuniuend
(ST®XTATEOTIABAUSSIDS » G°Q) / (A0d x § 0)UBY 4 ISTQ = SZISTSXIJUSDIDS
}
a28TS
{
0 = QOT1F
60 i

////// 0 => 3STA I+

sntpeysisydghbutpunog ~ T[OPOWOLISTA = 3STIQ

UOTARTNOTRD JOTT

T 1

T 10b

T oy

US 2022/0198752 Al

Jun. 23,2022 Sheet 12 of 23

70 gx93a9pn x JOIORIT + ZD'YXSIIASA x (QOIOBII -~ 1) = g0 disiul
\\\\\\w@.mx@pum> x QOTORIT + AD ¥XSIISA 4 (QOTORIT - T) = RO dIOIUT —0n
X0 gXOIIASA x QOTIORIT + MO YXSIISA x (QOIORIT - 1) = XD dxsiurg 4

Sm\
£TS GYSENUOTSTORId 3 g0 ¥SITSATOPOW = 30" EXSIION™——nu_ /¢
GYSENUOTSTORId % AD XOIISATOPOW = A0 d¥X01IaA

SRRUOTSTOSIg ¥ *XOLIVATOPON = TEaXDIITS
dYSPNUOTS T d X0 IIDATEPORW X0 gxel >|IIIIIII,BMW

61¢
VHSPWUOTSTOBId % 70 X01ISATOPOW = 70 ¥XOI1TI8A
\\\\\\‘mxmmZGOHmﬂomum 3 X0 X¥SITSATOPON = AD WXKOIISA —
¢S VHSBHUOTSTORIL 3 X0 XOIISATOPON = X0 WX81IoA €rs
\\\\\\ }
1S uoTaTsod xearen pezTiuenb yoes 07

(I + 4OT1T) >> gIITTIITIT GYSPRUOTSTO=2dd
dOTT >> gITTITITTIT TASBWNUOTSTOSId |
508

dJoit - 4oz = JoIerad

(QOTI)3UT = QOTIT 4
\ T 10¢

i

i

LOS

£0¢

UoT31eTodIslul X93I9A

Patent Application Publication

US 2022/0198752 Al

Jun. 23,2022 Sheet 13 of 23

Patent Application Publication

SOURYSTAXSLIRA / X XOIISATODOW x oTensglord + YIDIMTEXTJUaDIDG

\\\

L

LOL

0L

UOTSIBAUOD A/H

\\\\\\wocmwmﬂax@uumb / 7 TXOLADATOPOW x 2Ted8L0oIgd + 3UDTIOHTORIJUSSIDS 4 G0

'3

{(ACA x G 0)URY / JUDISHISXTJUSSIDS yx G0
T sosiabsp (09 = AOL

f

A

il

G0 = Hoee |

A XSQIDATOPOW + TOPOWOL1STA = SDURISTOIXDIIDA

}

ucI3Tsod ¥X5318a oDeds TIPOW YDES I03

= oTeosloxg

08%F = JUDTOHTSXTJUaBIOS
— 09 = YIPTMISRTJUSSIDG |

LS

T ClL

9 814

[

INZLXE LNYAD / (MIINED INVOD - z0°dIeiul) « 27e0gToDOR

\\\\\\\\Bzmaxmiazmba / CIHINED INVND ~ KO dIsiul) » oTBDSTaPOR

INZIXE INYAD / (dEINED INVGD - XO-dIeijul) x 3Te0STSPORW

i

__—b57
€09 871

20rdg TSPOW 01 UCTSISAUOD

i

i

7t XSYIDATOPON
L KOG ISATOPON
K" X93ISATOPOR

]

}

votirsod ¥@ixes psziiuenb yoes 1037 |

INTIXE INYOD
HALNID LNYAT -

V8 "3

US 2022/0198752 Al

Jun. 23,2022 Sheet 14 of 23

UMEI]
uMeIq
MBI
MBI
ITnsey

fgz ‘0 ‘9 1 i2GT8TT¥9T!
lg— ‘0 ‘v I fiyziigzrizetl
iyz ‘0 ‘g¢ 1 YiZGT’8ZTROT]
fg~ "0 ‘7z1 1 ‘{0Z148217245Z]
io ‘0 7 Porigzrigzrizeti
g ‘0 ‘gzT~1 ‘iggT’8ZT’0]
faz ‘0 ‘ze 1 Yi94T/8Z2T09T]
iy ‘0 ‘0 I fizet’eziieztl
[Z/R‘X]TRDOR {20 KD XD] TRUTD

s

p)

(1 ‘0 ‘g i 'g
0 ‘¢ el 7
(s 'y ‘¢ i1
(z 't ‘0 } 0

At
[pez ‘gz¢ | L
[tvz '1z¢ |} 19
[sez ‘'gze | 1g
lzvz ‘Lvg |} iy
lovz ‘128] S
[ggz ‘76z 1z
lpez ‘1z¢ i} o1
legz ‘oze] 10
[A’H] FERE)
$BOTIIDA PO
sIs—
00TTIO0T 0000000T 00T00T0T]
0DTITITTO‘0000000T 00T0000T]
000TTIO0T ‘0000000T “00T00TOT]
0OOTTITITO’0000000T 00TTTTITIT]
0000000T 70000000T/00T0000T!
000TO00T 0000000T 000000001
0TITO0T 0000000T 00000T0T]
00007 0000000T 00000007}
(Z0 /0 ‘x01AzeuTg %
90 TAIBA PRZTIUEHD peleT

IS

G000TT
18— ahorrr

1

C >

Z >>

oo~

o @
Q4

Mo O o NN O D

[ONR)
20
o
-

hueTtay peavsloag

>

—— § s@7buetIy QOT
8 8 £30TRI2A JOT
GTTTITITT = SXSPHUOTSTOI14
GITTTITITT = VHSBRUOTISTIORI
e 26070 = QOUTORIZ
LOR Z = JOTT N

e ZB0T = Q0TI
£08 0061 = 3810

Patent Application Publication

US 2022/0198752 Al

Jun. 23,2022 Sheet 15 of 23

Patent Application Publication

qas ‘s

=Ly
[V

e 00 P00
™~

:\‘l

[§N)

oo
|

>

,\i

posdeTToD

GMBIQ
GMBIJ
ITnsey

1 riggr’gzr’eotl
I fiegzy’gzr’ietl !
i orizgifgziiegtl
1 ‘iozriezriiszl !
1 ‘igzriegzriienl
1 “iegi’gzi‘o 17
1 ‘igst’gzi‘ostl
1 fitetfgziiezil !

{20/ A0 X0 TewTOSQ

se8™

" G000TT1
Les AOOTTITIT

[
UMBIg [
[
[

~

N

Lo's i ER3
£ ‘g i 7
v o‘c i1
T 0 0
oT1IDN STbueTI]
— saTbuetyg psioslcag
isez ‘uze |l FL
{Tvz ‘12¢ 1 H)
AR AN 'g
lgvz ‘wpe 1] iy
love ‘1ze 1 EES
igez “‘s6z 1 B
igez ‘9z¢] 1
fecz “o0ze] <0
[AYH] X3QIDA
J— sao13Ion paijoolorg
‘00000007711 013 P
‘00000007711 00713 29
‘0000000171 10T} tg
0000000T7T TITI Oty
QCQCOOOﬂ\f 0000011 g
‘0000000T7000000001 7
‘0000000T700000T0TY T
TY000C000T 000000011 20
700 X01Aaeutg XIS
BOTIISA POZIJUEN] pejleiodisiul

T
[

§ senTITes Q0T
GTTITITIT = GMSOHUOTSTO®I4
GTIITTIITT = Y{SBHUOTSTORIS
1770 = GOToRd]
Z = GOTT ™
——— 1%7°7 = QOTI
$T8 0077 = 3STAI

3s1q e o7dwexy uoTioslorg useiong pue UCTIeTOdISIUL XSJISA

618

[£8
LT8

£78

D8 "3

US 2022/0198752 Al

Jun. 23,2022 Sheet 16 of 23

[ee I AN o BN]
ANt BN aX)

e B s i e)
™~

™3
>

posdetion 1 2 ‘s i €
posdeTiIon o ¢ 9 1 'z
UMeIG g v ‘¢ i i1
UMBIG lz 't 'o0 i 0
ITnsay ssoTlI8n oThuBRTIl
e s3ThueTil psicelfoig
LS8
(ggz ‘9z¢ 1 ‘L
i1vz ‘o0ze |} ‘9
{9¢z ‘9zg i e
{192 ‘1%€ | iy
{o0vyZ ‘0z¢ 1} e
lgez ‘g6z] tZ
igez “oze T
fove ‘oze |} ‘0
{A'H] ECREEYN
e $20T3I9A pojoaloag
‘0 ‘v 1 ipGi’8ZTZoTl T/00000600T‘0T000TOTY (L
‘0 ‘z 1 flzzi’gzi’ocT] 000000007 ‘0T00000T] O
‘0 ‘pe 1 ‘{zgT’gzi’zot] T/0000000T 0T0O00T0TY G
‘0 ‘zzT 1 ‘fozi'‘szrfoszl i TO00000C0T 0TOTTITITY %
‘0 'z Pof{ezr‘ezToeT] “l0000000T 0000000T 0TO0000T] €
‘0 'gzT~1 “legT‘gZT’0 1 “[000TO00TY0000000T700000000F 2
‘0 ‘ze 1 “{pST82TY09T1 “[0TOTIOOT0000000T00000TOTY 1
‘0 ‘0 I “logtfezT’ezT] ‘[0T00000T’0000000T“0000000TY 0
‘X1 TRROR (2GR0 ¥0] TewuTosq (20D %01 AzeuTg XYYIIA
mmwslll\\l\x SBOT1ISA DozTIUENd psietodIsiul
e B @OTHUERTIL GOT
1e8 8 £20TIASA GOT
e 4000TTIIL = = qYSPWUCTSTOSI]
168 GOOTITIITL = = YYSBHUOTSTOSI
15K 0 = QOIoRag
\\IH_
LY8 7 = GOTT
=15 N T = QOTF
€8 0077 = ISTAT

sTdwexy ucTionslcoag ussIog pur uoTleTcdI®lUl XS3IISA

Patent Application Publication

618

678

18

Patent Application Publication Jun. 23,2022 Sheet 17 of 23 US 2022/0198752 A1l

911
905

901
909

907

Fig. 9

903

Patent Application Publication Jun. 23, 2022 Sheet 18 of 23 US 2022/0198752 A1l

1005

Fig. 10

1003

1001

Patent Application Publication Jun. 23,2022 Sheet 19 of 23 US 2022/0198752 A1l

1109

\>\ 1105

1101
AN

1111
1113
N

Cp—
qomsmant.
/ -
el
;; .
[faa) OEP
S —t =
— -
Ainaad L an
o
S
et

1107

111

Patent Application Publication Jun. 23, 2022 Sheet 20 of 23 US 2022/0198752 A1

1113

1201
\
1201

1201

1113
Fig. 12

L —

1111

1111

Patent Application Publication Jun. 23, 2022 Sheet 21 of 23 US 2022/0198752 A1l

1201
1201

l 1201

1113
Fig. 13

1t

111

US 2022/0198752 Al

Jun. 23,2022 Sheet 22 of 23

Patent Application Publication

Ob1 314 AL |

€ivl

V1 81

1

Patent Application Publication Jun. 23, 2022 Sheet 23 of 23 US 2022/0198752 A1l

ZI
Ranaa!
o)
W
.
$
q?) Ve
Yy
F (7o) by
Q o)
v —
o
9I
<
W
—
mI
.
o)
w
-y
W oy
< —
oot X
.
o \
=
<‘
L anal
<
va)
y—
8 ©
3 z =
= s g R g
> " Y S 2 R
< v o] — =]
— o =
% =M o
A -

100 \

US 2022/0198752 Al

SYSTEM AND METHOD FOR IMPROVED
RENDERING OF COMPUTER GRAPHIC
MODELS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application No. 63/127,913, which was filed Dec. 18,
2020, the disclosures of which is herein incorporated by
reference in its entirety and for all purposes.

FIELD

[0002] The present disclosure relates generally to data
management and video game systems, and more specifically,
but not exclusively, to systems and methods for rendering
three-dimensional (3D) geometric models using continuous
levels of detail (CLODs).

BACKGROUND

[0003] Computer games often comprise a graphically ren-
dered three-dimensional (3D) space that represents a virtual
world in which the players play the game. This virtual world
is typically filled with objects, e.g., characters, rooms,
vehicles, items, and environments that are used to create the
scene for the game. The game world is communicated to the
player through the lens of a virtual camera located a certain
position and oriented in a certain way in the environment.
Users must be able to perceive the environment of the video
game to see what is happening and react accordingly. As the
3D spaces that these games inhabit have become larger and
more complex, the task of rendering graphics has become
challenging, both computationally and in terms of the effort
required to accommodate various camera perspectives and
positions at a proper resolution.

[0004] A 3D computer graphic model is often used. In
particular, the model can be projected and displayed with
respect to a virtual/perspective camera that corresponds to
the user’s viewpoint. When rendering 3D geometric models
to a computer screen, there is often a mismatch between the
resolution of the geometric detail of the model and the
resolution of the computer screen. This mismatch is gener-
ally most noticeable when the model is rendered with a
perspective camera and the model moves nearer or farther
from the camera.

[0005] For example, individual surfaces of the model can
be represented by varying number of corresponding pixels
of the computer screen. More specifically, the model can be
represented with a greater number of screen pixels when it
is closer to the camera, and with a fewer number of pixels
when it is farther from the camera. Accordingly, when
displaying the model at an extremely far distance from the
camera, processing resources can be wasted when there is
generation of model details which, due at least to the
reduced number of screen pixels allotted to the model at that
distance, can be unappreciated by the user.

[0006] To reduce the objectionable visual effects that this
causes and to reduce the time spent processing invisible
triangles, some conventional systems generate different ver-
sions of the 3D models, each having differing complexities
or “levels of detail” (LODs). These approaches can include
presenting more detailed versions of the model when the
model is placed closer to the perspective camera, and less
detailed versions of the model when the model is placed

Jun. 23, 2022

farther from the camera. While such approaches may cut
down on the waste of certain processing resources by not
displaying the model in full-detail when it is far from the
camera, other problems are introduced.

[0007] For example, different versions of the model are
created by hand, thereby increasing workload for a graphic
artist. Storing a large quantity of these pre-generated models
can take up a large amount of computer memory. Further
still, switching between the different models, based on
camera distance, can cause a different kind of visual artifact
called “popping.” To address “popping” issues and reduce
manual model creation, progressive mesh (PM) methods
have been used; but these methods also increase computa-
tional resources and continue to generate additional objec-
tionable visual effects.

[0008] In view of the foregoing, there is a need for
improved systems and methods for implementing L.OD
functionality, in an effort to overcome the aforementioned
obstacles and deficiencies of conventional approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1A is an exemplary flow diagram illustrating
one embodiment of a method for rending a 3D computer
graphic model using a continuous level of detail (CLOD).
[0010] FIG. 1B is an exemplary diagram illustrating one
embodiment of various data for a 3D computer graphic
model that can be used with the CLOD method of FIG. 1A.
[0011] FIG. 1C is an exemplary diagram illustrating one
embodiment of the results of converting vertex coordinates
of FIG. 1B into unsigned 8-bit integers.

[0012] FIG. 2A is an exemplary diagram illustrating one
embodiment a distinct LOD with a lowest level of detail
using the CLOD method of FIG. 1A.

[0013] FIG. 2B is an exemplary diagram illustrating
another embodiment of a distinct LOD with a second-lowest
level of detail using the CLOD method of FIG. 1A.
[0014] FIG. 2C is an exemplary diagram illustrating
another embodiment of a distinct LOD with a second-
highest level of detail using the CLOD method of FIG. 1A.
[0015] FIG. 2D is an exemplary diagram illustrating
another embodiment a distinct LOD with a highest level of
detail using the CLOD method of FIG. 1A.

[0016] FIG. 3A is an exemplary diagram illustrating one
embodiment of an ordered triangle list, an ordered vertex
list, and a LOD table, corresponding to the distinct LOD of
FIG. 2A.

[0017] FIG. 3B is an exemplary diagram illustrating
another embodiment of an ordered triangle list, an ordered
vertex list, and a LOD table, corresponding to the distinct
LOD of FIG. 2B.

[0018] FIG. 3C is an exemplary diagram illustrating
another embodiment of an ordered triangle list, an ordered
vertex list, and a LOD table, corresponding to the distinct
LOD of FIG. 2C.

[0019] FIG. 3D is an exemplary diagram illustrating
another embodiment of an ordered triangle list, an ordered
vertex list, and a LOD table, corresponding to the distinct
LOD of FIG. 2D.

[0020] FIG. 4 is an exemplary diagram illustrating one
embodiment of floating point LOD (fLLOD) calculation logic
of the CLOD method of FIG. 1A.

[0021] FIG. 5 is an exemplary diagram illustrating one
embodiment for vertex interpolation logic of the CLOD
method of FIG. 1A.

US 2022/0198752 Al

[0022] FIG. 6 is an exemplary diagram illustrating one
embodiment of conversion-to-model-space logic of the
CLOD method of FIG. 1A.

[0023] FIG. 7 is an exemplary diagram illustrating one
embodiment of H/V conversion logic of the CLOD method
of FIG. 1A.

[0024] FIG. 8A is an exemplary diagram illustrating one
embodiment of various data regarding example LOD opera-
tions for a first distance using the CLOD method of FIG. 1A.
[0025] FIG. 8B is an exemplary diagram illustrating
another embodiment of various data regarding example
LOD operations for a second distance using the CLOD
method of FIG. 1A.

[0026] FIG. 8C is an exemplary diagram illustrating
another embodiment of various data regarding example
LOD operations for a third distance using the CLOD method
of FIG. 1A.

[0027] FIG. 9 is an exemplary diagram illustrating one
embodiment of a model that can be used with the CLOD
method of FIG. 1A.

[0028] FIG. 10 is an exemplary diagram illustrating an
embodiment of a wall abutment model that can be used with
the CLOD method of FIG. 1A.

[0029] FIG. 11 is an exemplary diagram illustrating
another embodiment of a model that can be used with the
CLOD method of FIG. 1A.

[0030] FIG. 12 is an exemplary diagram illustrating one
embodiment of moving world space coordinates of the
model of FIG. 11.

[0031] FIG. 13 is an exemplary diagram illustrating
another embodiment of moving world space coordinates of
the model of FIG. 11.

[0032] FIG. 14A is an exemplary diagram illustrating
another embodiment of the model of FIG. 11.

[0033] FIG. 14B is an exemplary diagram illustrating one
embodiment of moving world space coordinates of the
model of FIG. 14A.

[0034] FIG. 14C is an exemplary diagram illustrating
another embodiment of moving world space coordinates of
the model of FIG. 14A.

[0035] FIG. 15 is an exemplary top-level block diagram
illustrating one embodiment of a network multiplayer gam-
ing environment including at least one peer device for
implementing the CLOD method of FIG. 1A.

[0036] It should be noted that the figures are not drawn to
scale and that elements of similar structures or functions are
generally represented by like reference numerals for illus-
trative purposes throughout the figures. It also should be
noted that the figures are only intended to facilitate the
description of the preferred embodiments. The figures do not
illustrate every aspect of the described embodiments and do
not limit the scope of the present disclosure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0037] According to various embodiments, there are pro-
vided systems and methods for applying continuous levels
of detail (CLODs) to 3D computer graphic models. Turning
to FIG. 1A, an exemplary method 1000 for applying CLODs
to 3D computer graphic models is shown. As shown, the
method 1000 generates one or more distinct levels of detail
(LODs) for a given computer graphic model, at 1001. The
distinct (or discrete) LOD generation can include quantizing
one or more vertices of the model and applying various

Jun. 23, 2022

masks to these vertices. The distinct LOD generation can
also include determining the mask application to have
caused various model vertices to have become equivalent in
value/position in space, and to have caused various model
triangles to have collapsed. Where a given triangle has
collapsed, the triangle can be removed for purposes of an
at-hand distinct LOD. In some embodiments, lists and tables
can be built that correspond to the generated distinct LODs.
[0038] The method 1000 calculates one or more floating
point LOD (fLOD) values based on the generated discrete
LODs, at 1002. The fLLOD calculation can consider various
factors, including but not limited to a distance from the
camera, a screen resolution, a field of view, a model scale,
a model bounding sphere radius, and so on. Additionally
and/or alternatively, the fLOD calculation can consider a
visual fidelity parameter, such as, for example, whether to
quantize vertices to %4 pixel boundaries, 1 pixel boundaries,
or 2x2 pixel boundaries. For example, a 2x2 pixel boundary
can be a better fit for some hardware, but can also introduce
visible aliasing issues compared to a single-pixel or ¥4 pixel
quality. The resultant fL.OD value can be indicative of an
LOD that can be displayed. In some embodiments, where
the fL.OD value is a whole number, a corresponding distinct
LOD can be displayed. Where the fL.OD value is not a whole
number, an interpolated LOD can be generated and dis-
played. Such interpolated LOD generation can include mask
application and weighted sum operations. Then, display of a
distinct LOD or an interpolated LOD can include vertex
dequantization operations, and converting dequantized ver-
tex values from X/Y/Z from to H/V screen coordinates, at
1003. The operations discussed herein can be performed
using central processing units (CPU(s)), graphics processing
units (GPU(s)), or both. Various aspects will now be dis-
cussed in greater detail.

Generation of Distinct LODs (step 1001)

[0039] Three-dimensional model data can be pre-pro-
cessed off-line or at run-time prior to floating point LOD
level selection (step 1002) as desired. These 3D models are
represented by vertex positions, triangles, and other second-
ary vertex data such as normal vectors and texture UV
coordinates. This CLOD method 1000 advantageously
manipulates vertex positions and triangles.

[0040] Distinct LODs can be generated for an original 3D
computer graphic model. In conventional systems, these
distinct LODs can be manually hand-generated. However,
these hand-generated LODs are time consuming and usually
do not contain triangles with the appropriate level of detail
for each LOD. The distinct LODs automatically generated
by the CLOD method 1000 advantageously guarantees that
model triangles with detail too small to be seen at a
predefined viewing distance are not included. Instead, each
distinct LOD can include only the triangles from the original
model that are likely to be visible when viewed at a
predefined camera distance. As will be discussed, this is
done by creating lower precision vertex positions for each
subsequent distinct LOD. As discussed hereinbelow, addi-
tional LODs that are intermediate to these distinct LODs can
be generated.

[0041] Regarding each distinct LOD, coordinate values of
vertices of the model can be quantized into maskable forms,
such as to n-bit unsigned integers (e.g., to 16-bit unsigned
integers). Subsequently, as many as n bitmasks can be
generated. A given one of the n bitmasks can have all bits set
to 1 except for the m least significant bits (LSBs). Those m

US 2022/0198752 Al

LSBs can be set to 0. Within the set of bitmasks, m can range
from, as just one example, 0 to n. For example, the set of
bitmasks can include a bitmask for which m=3, and for
which all n bits except for the three LSBs are set to 1. Those
three LSBs can be set to zero.

[0042] In some embodiments, each of the bitmasks of the
set can be applied to generate a corresponding distinct LOD.
Application of a given bitmask can involve, for each vertex
of the model, logical operations (e.g., AND) the quantized/
maskable-form coordinates of that vertex with the bitmask.
As aresult, various vertices of the model that differ from one
another in terms of value/position-in-space can become
equivalent in value/position-in-space. Where such bitmask
operation causes two or more vertices of a given triangle of
the model to become identical in value/position-in-space,
the triangle can be considered collapsed. The collapsed
triangles can be removed from the model for the purposes of
the at-hand distinct LOD, thereby yielding a LOD which is
simpler than the original model. In this way, application of
the set of bitmasks can generate a set of distinct LODs, one
for each applied bitmask.

[0043] Insome embodiments, at least two ordered lists can
be generated: a) an ordered triangle list; and b) an ordered
vertex list. Additionally, an LOD table which references, for
each distinct LOD, the triangles and vertices that are utilized
by the distinct LOD can be generated. Generation of distinct
LODs will now be discussed in greater detail, including with
reference to an illustrative example.

[0044] Turning to FIG. 1B, exemplary data is shown that
define a 3D computer graphic model. FIG. 1B shows vertex
position data 101 (expressed in model space units) and
triangle data 103 that define the example model. In this
example, they component of each vertex is set to 0 for ease
of illustration of data manipulation described herein. As
used herein, the units used by the original model to represent
the vertex position is referred to as model space.

[0045] The triangle data shown in FIG. 1B represents a
given triangle in terms of the vertices spanned by its sides.
For instance, triangle “0” has: a) a side spanning vertex “0”
(ie., [5, 0, =1]) and vertex “1” (i.e., [7, 0, 3]); b) a side
spanning vertex “1” and vertex “2” (i.e., [3, 0, 4]); and ¢) a
side spanning vertex “2” and vertex “0.” FIG. 1B also shows
a ModelScale value 105 and BoundingSphereRadius value
107. The ModelScale value 105 defines the range of vertex
position values along the longest axis, while the Bounding-
SphereRadius value 107 indicates the distance from the
farthest vertex position to the origin. These values 105 and
107 can be used in later stages.

[0046] As noted, generation of distinct LODs can include
quantization of the coordinate values of the vertices of the
model to be stored as integers. The vertices can be quantized
to 8-bit unsigned integers for illustration purposes only.
However, in various embodiments, a quantization approach
which allows for more precision and/or range of vertex
positions can be used as desired (e.g., an unsigned 16-bit or
unsigned 32-bit representation can be used). Additionally
and/or alternatively, signed integers can be used instead of/in
addition to unsigned integers.

[0047] Turning to FIG. 1C, the results of converting the
signed vertex coordinates into unsigned 8-bit integers are
shown. In particular, FIG. 1C illustrates the results of the
conversion in binary form 109 and in decimal form 111.
Each vertex shows the binary representation and decimal
representation of the unsigned 8-bit value along with the

Jun. 23, 2022

equivalent model space value if the unsigned 8-bit value was
converted back to model space. FIG. 1C also shows the
corresponding pre-quantization/model space coordinates for
each vertex (113). Although the example shows a range of
values of vertex positions that fit within an 8-bit integer, the
CLOD method 1000 does not limit the vertex positions to fit
in a predefined integer.

[0048] Once the vertex positions have been converted to
integers, the number of distinct LODs (or “DistinctL.ODs”
as used herein) is chosen. As referenced, for an n-bit
unsigned integer, as many as n bitmasks—and therefore as
many as n distinct LODs—can be generated. According to
the illustrative example, as many as eight bitmasks—and
therefore as many as eight distinct LODs—can be generated.
Such individual distinct LODs can be numbered from n-1
(for the lowest level of detail) to 0 (for the highest level of
detail), where n is 8 according to the example. Each distinct
LOD includes only triangles from the original model that are
likely to be visible when viewed at a particular camera
distance. In some embodiments, this is done by creating
lower precision vertex positions for each subsequent distinct
LOD.

[0049] However, in various embodiments, a choice can be
made to generate fewer than such a maximum quantity of
bitmasks/distinct LODs. Such choice can constitute a quan-
tity of distinct LODs selection step. As just one example, of
the possible maximum number of LODs that can be gener-
ated, a certain quantity q of the least-detailed of those LODs
can be found to be inappropriate for a given application
(e.g., being considered to overly undetailed). As such, the
decision can be made to generate neither those q LODs nor
the corresponding q bitmasks.

[0050] In line with this, according to the illustrative
example, of the eight possible distinct LODs the four LODs
with the least level of detail can be considered to be overly
undetailed. As such, the illustrative generates only the four
most detailed ones of the possible eight distinct LODs, and
only generates the bitmasks which correspond to those four
most detailed LODs.

[0051] Further, when lower quality LODs are generated by
masking out vertex position LLSBs, each successive reduc-
tion in quality does not necessarily result in a significant
reduction in the number of vertices or triangles. As such, in
some embodiments a determination can be made as to
whether or not a particular generated lower quality LOD is
sufficiently similar (e.g., in terms of number of triangles
and/or vertices) to its next highest quality generated LOD.
Where the lower quality LOD is found to be sufficiently
similar, that LOD can be eliminated from the list of LODs.
In this way, benefits including saving of memory can accrue.
In certain embodiments, the next highest quality LOD can
instead be eliminated from the list.

[0052] To optimize the usage of the list of vertex positions
and the list of triangles, an ordered version of each list is
created. These ordered lists are initially empty and are
populated processing the distinct LODs from the lowest
detail level of detail to the highest level of detail. These
ordered lists allow all of the distinct LODs to share vertices
and triangles.

[0053] Turning to FIG. 2A, shown is various information
regarding the processing of “DistinctLOD3”—the distinct
LOD with the lowest level of detail. As referenced, for each
distinct LOD, a bitmask (shown as “PrecisionMask™ in
FIGS. 2A-2D) can be generated, the bitmask having all bits

US 2022/0198752 Al

set to 1 except for the m L.SBs, which are set to 0. The value
of m can be the DistinctL.OD number, thus m being 3 for
DistinctLOD3 of FIG. 2A. One approach to such bitmask
generation can be to, for a given distinct LOD, create the
bitmask by taking a binary value of all ones and shifting it
left by the DistinctLOD number (e.g., by 3 for Distinct-
LOD3 of FIG. 2A). For the example distinct LOD of FIG.
2A, the bitmask can be 11111000b (201).

[0054] As noted, bitmask application can involve, for
vertex, ANDing the quantized coordinates of that vertex
with the bitmask. In other words, the PrecisionMask 201 can
be ANDed with the quantized X/Y/Z components/coordi-
nates of each vertex of the model (shown in FIG. 1C). The
resultant values are shown in the “LLOD Quantized Vertices”
table of FIG. 2A, which shows the resultant values in binary
form 203 and in decimal form 205. Also shown are the
corresponding masked un-quantized/model space coordi-
nates for each vertex (207). By comparing the post-masking
vertex values of FIG. 2A with the corresponding pre-
masking vertex values of FIG. 1C, the loss of precision can
be appreciated. For instance, vertex “0” has post-masking
coordinates [128, 128, 120] (decimal form), but pre-masking
coordinates [133, 128, 127] (decimal form). It is noted that,
hereinthroughout, a number placed in quotes when discuss-
ing a vertex generally indicates that such vertex is being
referred to according to model numbering, rather than, say,
according to below-discussed ordered vertex numbering.
[0055] As referenced, bitmask application can cause ver-
tices which had been different in terms of value/position-
in-space to become equivalent in value/position in space. As
also referenced, where this causes two or more vertices of a
given triangle to become identical in value/position-in-
space, the triangle can be considered “collapsed.” As such,
the processing of DistinctL.OD3 can include examining the
triangles of the model and determining whether any have
collapsed in this way. Considering DistinctLOD3, triangle
“0” (209) is made up of vertices “0,” “1,” and “2.” Then,
looking at the “LOD Quantized Vertices” table, it can be
determined that the application of the 11111000b bitmask
has caused vertices “1” and “2” to become equivalent (e.g.,
as reflected by the table, vertices “1”” and “2” both have the
value [128, 128, 128], decimal). As such, triangle “0” can be
collapsed. Likewise, triangle “1” has collapsed due to its
constituent vertices—vertices “4,” “5,” and “6”—having
become equivalent in value. Further likewise, triangle “2”
has collapsed due to its constituent vertices—vertices ““5,”
“6,” and “7”—having become equivalent in value. On the
other hand, for triangles “3” and “4” the bitmask application
has not caused any constituent vertices to become equiva-
lent. As such, neither triangle “3” nor triangle “4” has
collapsed. It is noted that, hereinthroughout, a number
placed in quotes when discussing a triangle generally indi-
cates that such triangle is being referred to according to
model numbering, rather than, say, according to below-
discussed ordered triangle numbering.

[0056] As referenced, where the application of a bitmask,
in pursuit of creation of a distinct LOD for a model, causes
a given triangle of the model to collapse, such a triangle can
be removed from the model for the purposes of that distinct
LOD. As such, collapsed triangles “0,” “1,” and “2” can be
removed from the model for the purposes of distinctL.OD3.
[0057] An ordered triangle list and an ordered vertex list
can, as noted, be generated. These ordered lists can initially
be empty and can then be populated by processing the

Jun. 23, 2022

distinct LODs from the lowest detail level of detail to the
highest level of detail. These ordered lists can allow all of
the distinct LODs to share vertex and triangle data. For the
illustrative example—where only the four most detailed of
the possible eight distinct LODs are being generated—the
ordered triangle list and the ordered vertex list can be
populated: a) according to distinct LOD 3; b) then according
to distinct LOD 2; ¢) then according to distinct LOD 1; d)
finally according to distinct LOD 0.

[0058] Population of the ordered triangle list can be per-
formed such that: a) a given triangle is listed in the ordered
triangle list no more than once, although multiple distinct
LODs can include the triangle; b) a given triangle is added
to the ordered triangle list the first time—when processing
the distinct LODs from the lowest detail level of detail to the
highest level of detail—it is found to be an uncollapsed
triangle; ¢) upon addition of the triangle to the ordered
triangle list as per “b),” the triangle is assigned a next
available sequential ordered triangle number; d) when add-
ing a given triangle to the list, listed along with it are its
component vertices specified via their ordered vertex num-
bers; e) such an ordered vertex number is assigned to a
vertex the first time—when processing the distinct LODs
from the lowest detail level of detail to the highest level of
detail—it is added to the ordered triangle list; and f) the
ordered vertex number assignment as per “e)” involves the
vertex being assigned a next available sequential ordered
vertex number.

[0059] Furthermore, when a vertex is first added to the
ordered triangle list, it can also be added to the ordered
vertex list, in terms of its ordered vertex number. When so
added, listed along with it are its unmasked coordinates,
specified in one or more of: a) quantized binary form; b)
quantized decimal form; ¢) un-quantized/model space coor-
dinates. As to the noted LOD table, a given distinct LOD can
be added to the table upon completion of the ordered triangle
list and ordered vertex list operations for the distinct LOD.
In adding a given distinct LOD to the table, listed for the
LOD can be a “triangles” value tr and a “vertices” value vt.
The “triangles™ value can indicate that the corresponding
distinct LOD uses the first tr triangles, according to ordered
triangle numbering. Likewise, the “vertices” value can indi-
cate that the corresponding distinct LOD uses the first vt
vertices, according to ordered vertex numbering. As an
illustration, for a given distinct LOD a “triangles” value of
2 and a “vertices” value of 6 can indicate that the LOD uses
triangles O through 1 (ordered triangle numbering), and that
the LOD uses vertices 0-5 (ordered vertex numbering).
[0060] Considering the population of the ordered triangle
list with respect to the least detailed distinct LOD of the
illustrative example—DistinctL.OD3—the following is
noted. As mentioned, for distinct LOD 3, neither triangle “3”
nor triangle “4” has collapsed. As these triangles have not
collapsed, and as these triangles do not yet appear in the
ordered triangle list—the list being empty at this juncture—
these triangles are added to the list. As these are the first two
triangles which are added to the ordered triangle list, they
are assigned the first two ordered triangle numbers. In
particular, triangle “3” is assigned ordered triangle number
0 when added to the list (211). Further in particular, triangle
“4” is assigned ordered triangle number 1 when added to the
list (213).

[0061] Triangle “3” (ordered triangle number 0) includes
vertex “2,” vertex “6,” and vertex “3” (see FIGS. 1B and

US 2022/0198752 Al

2A). Then, triangle “4” (ordered triangle 1) includes vertex
“1,” vertex “8,” and vertex “4” (see FIGS. 1B and 2A). Next,
the vertices of each of these triangles can be added to the
ordered triangle list, specified via their ordered vertex num-
bers. As none of these vertices have been yet added to
ordered triangle list (the ordered triangle list not yet listing
any vertices), these unique six vertices are assigned the first
six ordered vertex numbers. In particular, considering the
vertices of ordered triangle 0 (215): a) vertex “2” is assigned
ordered vertex number 0 when added to the ordered triangle
list; b) vertex “6” is assigned ordered vertex number 1 when
added to the ordered triangle list; and ¢) vertex “3” is
assigned ordered vertex number 2 when added to the ordered
triangle list. Then, considering the vertices of ordered tri-
angle 1 (217): a) vertex “1” is assigned ordered vertex
number 3 when added to the ordered triangle list; b) vertex
“8” is assigned ordered vertex number 4 when added to the
ordered triangle list; and c) vertex “4” is assigned ordered
vertex number 5 when added to the ordered triangle list.
Shown in FIG. 3A is ordered triangle list 301, according to
the processing of DistinctLOD3.

[0062] As noted, when a given vertex is first added to the
ordered triangle list, it can also be added to the ordered
vertex list, in terms of its ordered vertex number. As such,
shown in FIG. 3A is ordered vertex list 303. Here, for each
of ordered vertex number 0-ordered vertex number 5, shown
for the vertex are its unmasked coordinates, specified in: a)
quantized binary form; b) quantized decimal form; and c)
un-quantized/model space coordinates. As to the LOD table,
shown in FIG. 3A is LOD table 305. Here, for Distinct-
LOD3, the “triangles” value is 2 and the “vertices” value is
6. As such, LOD table 305 indicates that DistinctL.OD3 uses
triangles O through 1 (ordered triangle numbering), and that
the DistinctL.OD3 uses vertices 0-5 (ordered vertex num-
bering), consistent with the foregoing discussion. In keeping
with this, FIG. 2A sets forth (218) “LOD Ordered List
Triangles 2” and “LLOD Ordered List Vertices 6.”

[0063] Continuing with the illustrative example, turning to
FIG. 2B, shown is various information regarding the pro-
cessing of “DistinctLOD2,” the distinct LOD with the
second-lowest level of detail. As the distinct LOD number
for DistinctLLOD2 is 2, the bitmask generated for Distinct-
LOD2 can have all bits set to 1 except for the two LSBs,
which are set to 0. As such, the bitmask for DistinctLOD2
can be 11111100b (219). Subsequent to its generation,
PrecisionMask 219 can be ANDed with the quantized X/Y/Z
components/coordinates of each vertex of the model. The
resultant values are shown in the “LLOD Quantized Vertices”
table of FIG. 2B, which shows the resultant values in binary
form 221 and decimal form 223. Also shown are the
corresponding masked un-quantized/model space coordi-
nates for each vertex (225). By comparing the post-masking
vertex values of FIG. 2B with: a) the corresponding pre-
masking vertex values of FIG. 1C; and b) the corresponding
post-masking vertex values of FIG. 2A, it can be seen that
DistinctLOD2 exhibits greater precision than Distinct-
LOD3, in keeping with the bitmask for DistinctLOD2 hav-
ing fewer zeroed-out bits than the bitmask for Distinct-
LOD3.

[0064] As a further step, the processing of DistinctLOD2
can include examining the triangles of the model and
determining whether any have collapsed due to the appli-
cation of bitmask 219 having caused model vertices to have
become equivalent in value/position in space. Considering

Jun. 23, 2022

DistinctL.OD2, triangle “2” (227) is made up of vertices “6,”
“5,” and “7.” Then, looking at the “LOD Quantized Verti-
ces” table, it can be determined that the application of
bitmask 219 has caused vertices “6” and “7” to become
equivalent. As such, triangle “2” has collapsed. On the other
hand, the application of bitmask 219 has not caused any
other triangles of the model to have collapsed. Accordingly,
collapsed triangle “2” can be removed from the model for
the purposes of distinctLOD2.

[0065] The population of the ordered triangle list with
respect to DistinctLOD2 will now be considered. As none of
triangles “0,” “1,” “3,” and “4” have collapsed, with the
processing of DistinctL.OD2 the ordered triangle list should
contain all four of these triangles. However, no action need
be taken to add triangles “3” and “4”, because these triangles
have already been added to the ordered triangle list in
connection with the processing for DistinctLOD3. Likewise,
the vertices of these triangles have already been added to the
ordered triangle list and ordered vertex list via the process-
ing for DistinctLOD3.

[0066] On the other hand, triangles “0” and “1” do not yet
appear in the ordered triangle list, these triangles are added
to the ordered triangle list. They are assigned the next two
available sequential ordered triangle numbers. In particular,
triangle “0” is assigned ordered triangle number 2 when
added to the list (229). Further in particular, triangle “1” is
assigned ordered triangle number 3 when added to the list
(231).

[0067] Next, the vertices of ordered triangle 2 and ordered
triangle 3 can be added to the ordered triangle list, specified
via their ordered vertex numbers. Considering ordered tri-
angle 2, this triangle includes vertices “0,” “1,” and “2.” Of
these vertices, vertices “1” and “2” have already been
assigned ordered vertex numbers via the processing of
Distinctl.OD3, the vertices being assigned ordered vertex
number 3 and ordered vertex number O, respectively. On the
other hand, vertex “0” has not yet been assigned an ordered
vertex number. As such, this vertex can be assigned the next
available sequential ordered vertex number, ordered vertex
number 6. In this way, the vertices of ordered triangle 2 can
be added (233) to the ordered triangle list as ordered vertex
number 6, ordered vertex number 3, and ordered vertex
number 0, respectively. Turning to ordered triangle 3, this
triangle includes vertices “4,” “5,” and “6.” Of these verti-
ces, vertices “4” and “6” have already been assigned ordered
vertex numbers via the processing of DistinctLOD3, the
vertices being assigned ordered vertex number 5 and ordered
vertex number 1, respectively. On the other hand, vertex “5”
has not yet been assigned an ordered vertex number. As
such, this vertex can be assigned the next available sequen-
tial ordered vertex number, ordered vertex number 7. In this
way, the vertices of ordered triangle 3 can be added (235) to
the ordered triangle list as ordered vertex number 5, ordered
vertex number 7, and ordered vertex number 1, respectively.
Shown in FIG. 3B is ordered triangle list 307, according to
the processing of DistinctLOD2. Ordered triangle list 307
corresponds to the same ordered triangle list as depicted by
FIG. 3A, but with additional data added.

[0068] As ordered vertex 6 and ordered vertex 7 have been
first added to the ordered triangle list via the processing for
DistinctL.OD2, the processing for DistinctLOD2 can further
include adding these vertices to the ordered vertex list, in
terms of their ordered vertex numbers. Accordingly, ordered
vertex list 309 of FIG. 3B, which depicts the ordered vertex

US 2022/0198752 Al

list as altered by the processing for DistinctLOD2, reflects
the addition of data for ordered vertex number 6 and ordered
vertex number 7, relative to the ordered vertex list as altered
by the processing for DistinctLOD3 (see FIG. 3A). Ordered
vertex list 309 corresponds to the same ordered vertex list as
depicted by FIG. 3A, but with additional data added. In
particular, ordered vertex list 309 of FIG. 3B shows, for each
of ordered vertex number 6 and ordered vertex number 7,
corresponding unmasked specified in: a) quantized binary
form; b) quantized decimal form; and ¢) un-quantized/model
space coordinates.

[0069] As to the LOD table, shown in FIG. 3B is LOD
table 311. LOD table 311 corresponds to the same LOD table
as depicted by FIG. 3A, but with additional data added.
Relative to the LOD table as depicted by FIG. 3A and
reflecting the processing for DistinctLOD3, the LOD table
as depicted by FIG. 3B (311) reflects the processing for
DistinctLOD2 and adds a corresponding table entry. In
particular, added to the LOD table is an entry for Distinct-
LOD2. For this new entry, the “triangles” value is 4 and the
“vertices” value is 8. As such, LOD table 311 indicates that
DistinctLOD2 uses triangles 0 through 3 (ordered triangle
numbering), and that the DistinctLOD2 uses vertices 0
through 7 (ordered vertex numbering), consistent with the
foregoing discussion. In keeping with this, FIG. 2B sets
forth (236) “LOD Ordered List Triangles 4” and “LOD
Ordered List Vertices 8.”

[0070] Continuing further with the illustrative example,
turning to FIG. 2C, shown is various information regarding
the processing of “DistinctLOD1,” the distinct LOD with
the second-highest level of detail. As the distinct LOD
number for DistinctLOD1 is 1, the bitmask generated for
DistinctLOD1 can have all bits set to 1 except for the LSB,
which is set to 0. As such, the bitmask for DistinctLOD1 can
be 11111110b (237). Subsequent to its generation, Preci-
sionMask 237 can be ANDed with the quantized X/Y/Z
components/coordinates of each vertex of the model. The
resultant values are shown in the “LLOD Quantized Vertices”
table of FIG. 2C, which shows the resultant values in in
binary form 239 and decimal form 241. Also shown are the
corresponding masked un-quantized/model space coordi-
nates for each vertex (243). By comparing the post-masking
vertex values of FIG. 2C with: a) the corresponding pre-
masking vertex values of FIG. 1C; b) the corresponding
post-masking vertex values of FIG. 2A; and c) the corre-
sponding post-masking vertex values of FIG. 2B, it can be
seen that DistinctLOD1 exhibits greater precision than both
DistinctLOD3 and DistinctLLOD2, in keeping with the bit-
mask for DistinctLOD1 having fewer zeroed-out bits than
both the bitmask for DistinctDOD3 and the bitmask for
DistinctLOD2.

[0071] As a further step, the processing of Distinct[LOD1
can include examining the triangles of the model and
determining whether any have collapsed due to the appli-
cation of bitmask 237 having caused model vertices to have
become equivalent in value/position in space. For Distinct-
LODI, it can be determined that the application of bitmask
237 has caused no vertices to become equivalent. As such,
the application of bitmask 237 has caused no triangles of the
model to have collapsed, therefore there are no triangles that
are to be removed from the model for the purposes of
distinctLOD1.

[0072] The population of the ordered triangle list with
respect to DistinctL.OD1 will now be considered. As none of

Jun. 23, 2022

the triangles have collapsed, with the processing of Distinct-
LODI the ordered triangle list should contain all triangles of
the model (i.e., triangles “0,” “1,” “2,” “3,” and “4”).
However, no action need be taken to add triangles “0”, “1,”
“3,” and “4” because these triangles have already been
added to the ordered triangle list in connection with the
processing for the preceding distinct LODs. Likewise, the
vertices of these triangles have already been added to the
ordered triangle list and ordered vertex list via the process-
ing for the preceding distinct LODs.

[0073] On the other hand, as triangle “2” does not yet
appear in the ordered triangle list, this triangle is added to the
ordered triangle list. It is assigned the next available sequen-
tial ordered triangle number—ordered triangle number
4—when added to the list (247).

[0074] Next, the vertices of ordered triangle 4 can be
added to the ordered triangle list, specified via their ordered
vertex numbers. Ordered triangle 4 includes vertices “6,”
“5,” and “7.” Of these vertices, vertices “6” and “5” have
already been assigned ordered vertex numbers via the pro-
cessing of the preceding distinct L.ODs, the vertices being
assigned ordered vertex number 1 and ordered vertex num-
ber 7, respectively. On the other hand, vertex “7” has not yet
been assigned an ordered vertex number. As such, this vertex
can be assigned the next available sequential ordered vertex
number, ordered vertex number 8. In this way, the vertices
of ordered triangle 4 can be added (247) to the ordered
triangle list as ordered vertex number 1, ordered vertex
number 7, and ordered vertex number 8, respectively. FIG.
3C shows an ordered triangle list 313, according to the
processing of DistinctL.OD1. Ordered triangle list 313 cor-
responds to the same ordered triangle list as depicted by
FIGS. 3A and 3B, but with additional data added.

[0075] As ordered vertex 8 has been first added to the
ordered triangle list via the processing for DistinctLODI1,
the processing for DistinctL.OD1 can further include adding
this vertex to the ordered vertex list, in terms of its ordered
vertex number. Accordingly, ordered vertex list 315 of FIG.
3C, which depicts the ordered vertex list as altered by the
processing for Distinctl.OD1, reflects the addition of data
for ordered vertex number 8, relative to the ordered vertex
list as altered by the processing for DistinctL.OD2 (see FIG.
3B). Ordered vertex list 315 corresponds to the same ordered
vertex list as depicted by FIGS. 3A and 3B, but with
additional data added. In particular, ordered vertex list 315
of FIG. 3C shows for ordered vertex number 8 correspond-
ing unmasked coordinates specified in: a) quantized binary
form; b) quantized decimal form; and ¢) un-quantized/model
space coordinates.

[0076] As to the LOD table, shown in FIG. 3C is LOD
table 317. LOD table 317 corresponds to the same LOD
table as depicted by FIGS. 3A and 3B, but with additional
data added. Relative to the LOD table as depicted by FIG.
3B and reflecting the processing for DistinctLOD?2, the LOD
table as depicted by FIG. 3C (317) reflects the processing for
Distinctl.OD1 and adds a corresponding table entry, an entry
for DistinctLOD1. For this new entry, the “triangles” value
is 5 and the “vertices” value is 9. As such, LOD table 317
indicates that DistinctLOD1 uses triangles O through 4
(ordered triangle numbering), and that the DistinctLODI1
uses vertices 0 through 8 (ordered vertex numbering), con-
sistent with the foregoing discussion. In keeping with this,
FIG. 2C sets forth (248) “LOD Ordered List Triangles 57
and “LOD Ordered List Vertices 9.”

US 2022/0198752 Al

[0077] Continuing still further with the illustrative
example, turning to FIG. 2D, shown is various information
regarding the processing of “Distinctl.ODO0,” the distinct
LOD with the highest level of detail. As the distinct LOD
number for DistinctLODO is 0, the bitmask generated for
DistinctLODO can have all bits set to 1 (i.e., with a distinct
LOD number of 0, there are zero/no LSBs to be set to zero).
As such, the bitmask for DistinctLOD1 can be 11111111b
(249). Subsequent to its generation, PrecisionMask 249 can
be ANDed with the quantized X/Y/Z components/coordi-
nates of each vertex of the model. The resultant values are
shown in the “LOD Quantized Vertices” table of FIG. 2D,
which shows the resultant values in in binary form 251 and
decimal form 253. Also shown are the corresponding
masked un-quantized/model space coordinates for each ver-
tex (253). By comparing the post-masking vertex values of
FIG. 2D with the corresponding pre-masking vertex values
of FIG. 1C, it can be seen that DistinctLODO exhibits the
same precision as those pre-masking vertex values of FIG.
1C. Such is in keeping with the all-1’s nature of the bitmask
for DistinctLODO. It is noted that, in various embodiments,
such an all-1’s bitmask can be neither generated nor applied,
with the pre-masking vertex values instead being considered
the result of bit mask application for the purposes of further
processing.

[0078] As a further step, the processing of DistinctLODO
can include examining the triangles of the model and
determining whether any have collapsed due to the appli-
cation of bitmask 249 having caused model vertices to have
become equivalent in value/position in space. For Distinct-
LODO, it can be determined that the application of bitmask
249 has caused no vertices to become equivalent. As such,
the application of bitmask 249 has caused no triangles of the
model to have collapsed, and therefore there are no triangles
that are to be removed from the model for the purposes of
distinctLODO. According to various embodiments, it can be
recognized that: a) the application of an all-1’s bitmask to
the pre-masking vertex values yields the pre-masking vertex
values themselves; b) that a distinct LOD which utilizes an
all-1’s bitmask (e.g., as is the case for DistinctLODO of the
example) will be equivalent to the core model; and ¢) it can
be known, without explicit processing, that no triangles of
the model have collapsed for the purposes of that distinct
LOD. Additionally and/or alternatively, when the core
model is scaled and fitted to an unsigned integer as shown
in FIG. 1C, the model can include collapsed triangles.

[0079] The population of the ordered triangle list with
respect to DistinctL.ODO will now be considered. As none of
the triangles have collapsed, with the processing of Distinct-
LODO the ordered triangle list should contain all triangles of
the model (i.e., triangles “0,” “1,” “2,” “3,” and “4”).
However, no action need be taken to add any of these
triangles as all triangles of the model have already been
added to the ordered triangle list in connection with the
processing for the preceding distinct LODs. Likewise, the
vertices of all triangles of the model have already been
added to the ordered triangle list and ordered vertex list via
the processing for the preceding distinct LODs. In keeping
with this, shown in FIG. 3D is the ordered triangle list 319
according to the processing of DistinctLODO, this ordered
triangle list being equivalent to the ordered triangle list
according to the processing of DistinctLODI1 (see 313 of
FIG. 3C). Ordered triangle list 319 corresponds to the same
ordered triangle list as depicted by FIGS. 3A-3C. Further in

Jun. 23, 2022

keeping with this, shown in FIG. 3D is the ordered vertex list
321 of FIG. 3D according to the processing of Distinct-
LODO, this ordered vertex list being equivalent to the
ordered vertex list according to the processing of Distinct-
LODI1 (see 315 of FIG. 3C). Ordered vertex list 321 corre-
sponds to the same ordered vertex list as depicted by FIGS.
3A-3C. The ordered triangle list 319 and ordered vertex list
321 thus show these lists subsequent to processing of all
distinct LODs of the illustrative example (i.e., the process-
ing of DistinctLOD3 through DistinctLODO).

[0080] As to the LOD table, shown in FIG. 3D is LOD
table 323. LOD table 323 corresponds to the same LOD
table as depicted by FIGS. 3A-3C, but with additional data
added. Relative to the LOD table as depicted by FIG. 3C and
reflecting the processing for DistinctLOD1, the LOD table
as depicted by FIG. 3D (323) reflects the processing for
Distinctl.ODO and adds a corresponding table entry, an entry
for DistinctLODO. For this new entry, the “triangles” value
is 5 and the “vertices” value is 9. As such, LOD table 323
indicates that DistinctLODO uses triangles O through 4
(ordered triangle numbering), and that the LOD uses vertices
0 through 8 (ordered vertex numbering), consistent with the
foregoing discussion. Then, FIG. 2D sets forth (257) “L.OD
Ordered List Triangles 5 and “LLOD Ordered List Vertices
9.” The LOD table 323 shows the LOD table subsequent to
processing of all distinct LODs of the illustrative example
(i.e., the processing of DistinctLOD3 through Distinct-
LODO0). According to the illustrative example, both Distinct-
LODI1 and DistinctL.ODO are equivalent distinct LODs.
[0081] The discussed operations regarding generation of
distinct LODs can, for example, be performed at a pre-
processing stage (e.g., using an off-line software tool), or
otherwise performed ahead of a run-time calculation of a
floating point LOD (f{LLOD) value, which is discussed below.
[0082] Via the operations discussed in connection with
FIGS. 2A-2D and 3A-3D, distinct LODs including certain
vertices and certain triangles can be generated. In various
embodiments, those vertices of a model that are controlled
by bone matrices can be included in all distinct LODs. In this
way, models that use skinning (e.g., models that contain
sub-meshes that animate with bone matrices can be sup-
ported by, for instance, taking into account that vertices
which are affected by bone matrices can move relative to
other vertices, even when they have the same vertex posi-
tions.

[0083] Moreover, in various embodiments where virtual
bones are employed, model vertices can be appropriately
sorted prior to the performance of the operations discussed
in connection with FIGS. 2A-3D. Such virtual bones can be
found in models that include animated limbs/sections which
are each divided into a hierarchy of subsections controlled
by one or more matrices called bones. These bones can allow
these subsections to move (e.g., rotate). As such, a given
vertex in a model can be controlled by one or more such
bones. When groups of vertices are controlled with the same
set of bones, these bones can be mathematically combined
into a matrix concatenation called a virtual bone.

[0084] Further, discussed above in connection with FIGS.
2A-2D is a bitmask approach including: a) creating the
bitmask for a given distinct LOD by taking a binary value of
all ones and shifting it left by the DistinctLOD number; b)
applying this bitmask to a given vertex by ANDing the
quantized coordinates of that vertex with the bitmask. How-
ever, according to various embodiments other approaches

US 2022/0198752 Al

can be taken. For example, instead of ANDing the quantized
coordinates of the vertex with the bitmask, the quantized
coordinates of the vertex can be ORed with the bitwise NOT
of'the bitmask. As yet another example, according to various
embodiments the following bitmask approach can be taken:

if DistinctLODNumber ==

ResultantValue = OriginalValue

}

else

ResultantValue = (OriginalValue & (11111111b <<
DistinctLODNumber)) | (00000001b << (DistinctLODNumber-1))

[0085] Here, OriginalValue can correspond to a quantized
X, Y, or Z coordinate of a given vertex prior to mask
application, while ResultantValue can correspond to that
vertex coordinate after mask application. As illustrated by
the sample code, where the DistinctL OD number is zero, the
quantized vertex coordinate can be left unchanged. Further,
where the DistinctLOD number is not zero, the quantized
vertex coordinate can be set to the OR of: a) generating a
first bitmask by taking a binary value of all ones and shifting
it left by the DistinctLOD number and ANDing the quan-
tized coordinate with the first bitmask; and b) generating a
second bitmask by taking a binary value of all zeros except
for a 1-valued LSB and shifting it left by one less than the
DistinctLOD number.

Selection of Floating Point LOD Level (Step 1002)

[0086] When rendering a model to the screen, it is neces-
sary to select the appropriate LOD for a given model
distance from the camera. Selecting a LOD with too much
detail wastes compute power when triangles are too small to
resolve on the screen. Selecting a LOD with too little detail
will result in poor quality when potential detail is missing.
[0087] So as to support display of the model to the screen,
a floating point LOD (fLOD) value can be calculated. In
particular, the calculation of the fL.OD value can take into
account factors including the size of screen pixels for an
at-hand distance from the camera to the model and the scale
of the model. Where fLLOD holds a whole number value, a
distinct LOD can be displayed. And, where {L.OD holds a
non-whole-number value, an interpolated LOD can be gen-
erated and displayed (e.g., displayed transitionally). Higher
values of fLOD can trend towards less-detailed LODs, while
lower values of fLOD can trend toward more-detailed
LODs. Interpolated LOD generation discussed in greater
detail below.

[0088] {LOD calculation is now discussed, with reference
to the illustrative code of FIG. 4. This calculation attempts
to match the minimum detail in each distinct LOD (gener-
ated in the previous section), to the size of a pixel on the
screen at a given distance from the camera to the model.
Turning to FIG. 4, line 401 indicates that the fLLOD value can
be set to log 2(QuantUnitPixels) where the fLOD value is
not set according to the edge case handling of if block 403
(discussed later). In line 401, QuantUnitPixels refers to a
value defined at line 405. More generally, QuantUnitPixels
can be set according to the number of screen pixels for each
unit of the quantized vertex position coordinates. As {L.OD
is set according to the binary logarithm of QuantUnitPixels,

Jun. 23, 2022

there is a positive correlation between fL.LOD and QuantU-
nitPixels. As such: a) fLOD is driven higher (i.e., towards
less-detailed L.ODs) by higher values of QuantUnitPixels;
and b) fL.OD is driven lower (i.e., towards more-detailed
LODs) by lower values of QuantUnitPixels.

[0089] As referenced, QuantUnitPixels can be set accord-
ing to line 405. In particular, at line 405 QuantUnitPixels can
be set according to the values of: a) QuantExtent; b) Screen-
PixelSize; and ¢) ModelScale.

[0090] Because of the positive correlation between fL.OD
and QuantUnitPixels, there is a positive correlation between
fLOD and QuantExtent. As discussed, the coordinate values
of'vertices of the model can be quantized into n-bit unsigned
integers. QuantExtent can be related to n such that larger
values of n result in higher values of QuantExtent, and vice
versa.

[0091] Because of the positive correlation between fL.OD
and QuantUnitPixels, there is a positive correlation between
fLOD and ScreenPixelSize. ScreenPixelSize can correspond
to the size of screen pixels in world space units at Dist,
where Dist can, as is discussed in greater detail below, relate
to the distance from the camera to the nearest triangle in the
model. World space units can be those units used to repre-
sent items in the game world. As reflected by line 407,
ScreenPixelSize is positively correlated to Dist. Accord-
ingly, as an example, a lower value of ScreenPixelSize can
drive QuantUnitPixels lower, thereby leading to a lower
value of fLOD (i.e., to a higher-detail LOD). Such is keeping
with a smaller value of ScreenPixelSize (e.g., due to a lower
Dist value) leading to a circumstance where higher dis-
played model detail can more likely be appreciated by a user.
[0092] Because of the positive correlation between fL.OD
and QuantUnitPixels, there is a negative correlation between
fLLOD and ModelScale. As referenced, the ModelScale can
correspond to the range of vertex position values of the
model along the longest axis. Accordingly, as an example, a
higher value of ModelScale can drive QuantUnitPixels
lower, thereby leading to a lower value of fL.OD (i.e., to a
higher-detail LOD). Such is keeping with a higher value of
ModelScale meaning a larger model (i.e., a higher range of
vertex position values), and therefore call to display such
model in greater detail to a user.

[0093] Returning to line 407, discussed ScreenPixelSize
can, more specifically, be set according to the code of line
407. Here, FOV can be a field-of-view value and Screen-
VerticalPixels can correspond to the vertical-direction quan-
tity of pixels on the display of a user. Then, as noted above,
Dist can relate to the distance from the camera to the nearest
triangle in the model. More specifically, Dist can be set
according to the code of line 409. Here, DistToModel can
correspond to the distance from the camera to the origin of
the nearest triangle in the model, while BoundingSphereRa-
dius can indicate the distance from the farthest vertex
position of the model to the origin. The subtraction of
BoundingSphereRadius from DistToModel, as set forth by
line 409, can help to ensure that the calculated fLLOD value
correspond to sufficient detail to render the closest triangle
in the model. It is noted that, in various embodiments, Dist
can be set to DistToModel (i.e., the subtraction of Bound-
ingSphereRadius can be not performed). It is observed that
such embodiments can tend to result in a higher value being
calculated fLLOD, corresponding to lesser detail.

[0094] Returning to edge case handling if block 403, as
depicted by the code of block 403 fL.LOD can be set to

US 2022/0198752 Al

O——corresponding to the most detailed distinct LOD—where
Dist as calculated by line 409 leads to a value of zero, or less.
For example, this can be used to display the model in highest
possible detail when it is very close a user. As depicted by
the logic of FIG. 4, where the if condition of block 403 is not
met, f1.OD can be set according to lines of code 401, 405,
and 407, and code blocks 411 and 413.

[0095] Regarding code blocks 411 and 413, block 411 can
set fLOD to zero where the code of lines 401, 405, and 407
results in fL.OD having a value of less than zero. In this way,
block 411 can act to ensure that fLOD is set consistent with
DistinctLOD0 being the most-detailed distinct LOD.
Then—with DistinctLODs being the quantity of distinct
LODs, and such distinct LODs being numbered from 0 to
(DistinctLODs-1)—Dblock 413 can set fLOD to (Distinct-
LODs-1) where the code of lines 401, 405, and 407 results
in fLOD having a value of greater than (DistinctLODs-1).
In this way, block 413 can act to ensure that fL.OD is set
consistent with (DistinctLODs-1) being the least-detailed
distinct LOD.

[0096] In this way, the code of FIG. 4 can act towards
selecting an appropriate LOD for a given model distance
from the camera. For example, selecting a LOD with too
much detail can waste compute power when triangles are too
small to resolve on the screen, while selecting a LOD with
too little detail can result in poor quality when potential
detail is missing.

[0097] The operations of FIG. 4 calculate a single fL.OD
value. However, in various embodiments multiple {L.OD
values can be calculated, one for each vertex of the model.
Calculation of a given per-vertex fL.LOD value can be per-
formed in a manner analogous to that laid out in connection
with FIG. 4, with appropriate modifications made (e.g.,
DistToModel can be replaced with a variable which reflects
distance from the camera to the given vertex). Such a
per-vertex f1.OD value approach can provide a more accu-
rate LOD for each model triangle, at the expense of
increased compute time. Also, in various embodiments a
quality modifier can be applied to the calculation of {1.OD.
As just one example f1.OD as calculated according to the
code of FIG. 4 can be multiplied by a variable ModQual to
yield a quality-modified fLOD value. Such functionality can
facilitate decreasing or increasing model visual quality when
rendering to the screen. Continuing with the example, lower
values of ModQual increase rendering quality (by driving
the quality-modified fL.OD value lower), while higher val-
ues of ModQual can decrease rendering quality (by driving
the quality-modified fLOD value higher).

[0098] The discussed operations regarding generation of
fLLOD calculation can, for example, be performed at run-
time.

Generation of Interpolated LODs (Step 1003)

[0099] As noted, where calculation of fLLOD yields a
non-whole-number value, an interpolated LOD can be gen-
erated. Such interpolated LOD generation will now be
discussed with reference to illustrative code.

[0100] Turning now to the vertex interpolation illustrative
code of FIG. 5, an illustrative example where the discussed
fLOD calculations have resulted in an fLOD value of 2.5 is
shown. To facilitate discussion, the illustrative code for FIG.
5 assumes that quantization to 8-bit unsigned integers has
occurred. However, in various embodiments analogous code
which operates with respect to different quantization (e.g.,

Jun. 23, 2022

unsigned 16-bit or unsigned 32-bit quantization) can be
used. Further, while the illustrative code operates upon
quantized vertex coordinates, other possibilities exist. For
example, in various embodiments such vertex coordinates
can be converted from quantized form to un-quantized/
model space coordinate form prior to interpolation, poten-
tially resulting in higher-precision interpolated values, at the
expense of increased compute time.

[0101] In various embodiments, prior to the execution of
the code of FIG. 5, a check can be performed as to whether
or not fLOD is a whole number. In these embodiments, the
code of FIG. 5 can be skipped where fL.LOD is found to be
a whole number. At line 501, iLOD can be set to hold the
integer/whole number portion of {LOD. As such, according
to the illustrative example, line 501 causes iL.LOD to hold a
value of 2. Next, at line 503, fracLOD can be—via the
subtraction of iLOD from fLLOD—set to hold the fractional
portion of fLOD. According to the illustrative example, line
503 causes fracL.OD to hold a value of 0.5.

[0102] At line 505 and 507 two bitmasks are generated. In
particular, at line 505 bitmask PrecisionMaskA can be
generated by taking a binary value of all ones and shifting
it left by the iLOD (e.g., by 2 according to the illustrative
example). Then, at line 507, bitmask PrecisionMaskB can be
generated by taking a value of all ones and shifting it left by
(iLOD+1), and therefore by 3 according to the illustrative
example. As such, considering f.OD as a fractional number
bound by two integers, PrecisionMaskA can correspond to
the distinct LOD of the lower bounding integer, and Preci-
sionMask B can correspond to the distinct LOD of the higher
bounding integer. As such, PrecisionMaskA can correspond
to the higher detail DistinctLOD while PrecisionMaskB can
correspond to the lower detail DistinctL.OD. It is noted that,
in various embodiments, rather than generating Precision-
MaskA and PrecisionMaskB as set forth in lines 505 and
507, previously-generated bitmasks can be used. For
example, according to the illustrative example, Precision-
MaskA as generated by line 505 can be equivalent to a
DistinctL.OD2 bitmask previously generated as discussed
above (i.e., PrecisionMask 219). Accordingly, such a previ-
ously-generated bitmask can be used for PrecisionMaskA
instead of generating PrecisionMaskA anew as set forth by
line 505. Likewise, further according to the illustrative
example, PrecisionMaskB as generated by line 507 can be
equivalent to a DistinctLLOD3 bitmask previously generated
as discussed above (i.e., PrecisionMask 201). Accordingly,
such a previously-generated bitmask can be used for Preci-
sionMaskB instead of generating PrecisionMaskB anew as
set forth by line 507.

[0103] Next discussed is for-each loop 509, which
executes the lines of its corresponding code block with
respect to the X/Y/Z coordinates of each vertex of the
model. At lines 511-515, PrecisionMaskA is applied to the
X/Y/Z coordinates of a given vertex of the model which is
currently being visited according to the for-each loop. Like-
wise, at lines 517-521, PrecisionMaskB is applied to the
X/Y/7Z coordinates of the given vertex of the model which is
currently being visited according to the for-each loop. It is
noted that, in various embodiments, rather than applying
PrecisionMaskA and PrecisionMaskB to the X/Y/Z coordi-
nates of each vertex of the model according to the for-each
loop and via lines 511-521, the results of previous bitmask
applications can be utilized. For example, according to the
illustrative example, the application of PrecisionMaskA to

US 2022/0198752 Al

each vertex of the model according to the for-each loop and
via lines 511-515 can have already been performed via the
application of PrecisionMask 219 in connection with the
processing of DistinctL.OD2, as discussed above. Likewise,
further according to the illustrative example, the application
of PrecisionMaskB to each vertex of the model according to
the for-each loop and via lines 517-521 can have already
been performed via the application of PrecisionMask 201
performed in connection with the processing of Distinct-
LOD3, as discussed above.

[0104] At lines 523-527, weighted sums are utilized to set
Interp.QX, Interp.QY, and Interp.QZ, which correspond,
respectively, to the X, Y, and Z coordinates of an interpo-
lated version of the given model vertex which is currently
being visited according to the for-each loop. In particular,
Interp.QX can be set according to a weighted sum where
VertexA.QX (set via line 511) is weighted according to
(1-fracLOD), and where VertexB.QX (set via line 517) is
weighted according to fracL.LOD. Analogous operations can
be performed at lines 525 and 527 to set Interp.QY and
Interp.QZ, respectively.

[0105] In this way, where fLLOD is not a whole number but
rather a fractional number non-equidistantly bound by two
integers, the weighted summing can favor the masked coor-
dinate values for the distinct LOD of the closer bounding
integer when yielding the interpolation. As one example,
where fL.LOD holds a value of 1.2, the weighted summing can
favor the masked coordinate values for DistinctLOD1 over
the masked coordinate values for Distinctl.OD2 when yield-
ing the interpolation. As another example, where {L.OD
holds a value of 1.8, the weighted summing can favor the
masked coordinate values for DistinctLOD2 over the
masked coordinate values for DistinctLOD1 when yielding
the interpolation. Further, where fL.OD is a fractional num-
ber equidistantly-bound by two integers the weighted sum-
ming can, when yielding the interpolation, cause equivalent
contributions by: a) the masked coordinate values for the
distinct LOD of the lower bounding integer; and b) the
masked coordinate values for the distinct LOD of the upper
bounding integer. As such, for the illustrative example where
fLOD is 2.5, the weighted summing can cause equivalent
contributions by the masked coordinate values for Distinct-
LOD?2 and the masked coordinate values for DistinctLOD3.
[0106] With completion of the code of FIG. 5, a list of
vertex coordinates can be held for a newly-generated inter-
polated LOD which corresponds to a non-whole number
fLOD value. In various embodiments, the vertex coordinates
yielded by the discussed code can subsequently be subjected
to operations akin to those discussed in connection with
FIGS. 2A-2D so as to: a) examine the triangles of the model
and determine whether any have collapsed due to the code
operations having caused model vertices to become equiva-
lent in value/position in space for the at-hand new interpo-
lated LOD; and b) determine any triangles that are to be
removed from the model for the purposes of the at-hand new
interpolated LOD.

[0107] The discussed operations regarding generation of
interpolated LODs can, for example, be performed at run-
time.

Distinct LOD and Interpolated LOD Display (Step 1003)

[0108] As referenced, where calculation of fLLOD yields a
whole number value, the distinct LOD which corresponds to
that whole number value can be displayed (e.g., where the

Jun. 23, 2022

calculated fLOD wvalue is 2, DistinctLOD2 can be dis-
played). Further, where calculation of fLOD yields a non-
whole-number value, an interpolated LOD which corre-
sponds to that non-whole number value can be generated
and displayed.

[0109] Further still, in various embodiments, where fLOD
as calculated holds a non-whole-number value, the corre-
sponding generated interpolated LOD can be displayed in a
transitional fashion, with a distinct LOD being subsequently
displayed. As just one example, where the calculated non-
whole-number fL.LOD is higher than the DistinctLOD num-
ber of a currently-displayed distinct LOD by a fractional
value, subsequent to display of a corresponding interpolated
LOD, a distinct LOD having a DistinctLOD number one
higher than that of the currently-displayed distinct LOD can
be displayed. As an illustration, suppose that f.LOD as
calculated holds 2.8 and that DistinctLOD2 is being dis-
played. According to this illustration, subsequent to display
of an interpolated LOD corresponding to the 2.8 {L.OD
value, DistinctLOD3 can be displayed. As just another
example, where the calculated non-whole-number f1.OD is
lower than the DistinctLOD number of a currently-displayed
distinct LOD by a fractional value, subsequent to display of
a corresponding interpolated LOD, a distinct LOD having a
DistinctL.OD number one lower than that of the currently-
displayed distinct LOD can be displayed. As an illustration,
suppose that f1.OD as calculated holds 1.6 and that Distinct-
LOD2 is being displayed. According to this illustration,
subsequent to display of an interpolated LOD corresponding
to the 1.6 fL.OD value, DistinctLOD1 can be displayed.
Many variations are possible.

[0110] In an aspect, display of an interpolated LOD can
include obtaining the coordinate values for corresponding
vertices, and the corresponding triangle data which specifies
interconnections between those vertices. For an interpolated
LOD, such vertex coordinate information can be obtained
via the operations discussed in connection with FIG. 5,
while such triangle information can be obtained by access-
ing triangle/vertex interconnect data associated with the
model, along with consideration—in a manner analogous to
that discussed—of which triangles have collapsed for the
at-hand interpolated LOD.

[0111] Such obtained vertex coordinate information can be
in quantized form (e.g., in quantized binary form). As such,
display of the interpolated LOD can include converting such
vertex coordinate information from quantized form to un-
quantized/model space coordinate form. Shown in FIG. 6 is
illustrative code for performing such conversion. Turning to
lines 601 and 603, QUANT_CENTER and QUANT_EX-
TENT are set. As referenced, the quantized form can cor-
respond to quantization into n-bit unsigned integers. QUAN-
T_EXTENT can be related to n such that larger values of n
result in higher values of QUANT_EXTENT, and vice
versa. In particular, at line 603 QUANT_EXTENT can be
set to (2n-2). The illustrative logic of FIG. 6—which utilizes
an n value of 8 to facilitate discussion (i.e., the vertices have
been quantized using 8-bit unsigned integers)—sets QUAN-
T_EXTENT to 254 (i.e., 28-2 yields 254). Then, returning
to line 601, QUANT_CENTER can be set to (27/2). In
keeping with this, the illustrative code of FIG. 6 sets
QUANT_CENTER to 128 (i.e., 2%/2 yields 128).

[0112] Next discussed is for-each loop 605, which
executes the lines of its corresponding code block with
respect to each X/Y/Z tuple of the quantized form vertex

US 2022/0198752 Al

coordinate information. In lines 607-613, Interp.QX, Interp.
QY, and Interp.QZ correspond, respectively, to the quantized
X, Y, and Z coordinates of the particular X/Y/Z tuple which
is currently being visited according to the for-each loop.
Then, ModelVertex. X, ModelVertex.Y, and ModelVertex.Z
correspond, respectively, to the un-quantized/model space
coordinate forms of Interp.QX, Interp.QY, and Interp.QZ.
[0113] Considering line 607, QUANT_CENTER and
QUANT_EXTENT are applied as shown. Also applied as
shown is ModelScale. With reference to earlier discussion,
ModelScale can correspond to the range of vertex position
values of the model along the longest axis. Analogous
operations can be performed at lines 609 and 613 to set
ModelVertex.Y and ModelVertex.Z, respectively. It is noted
that for the illustrative code of FIG. 6, model space is, to
facilitate discussion, equivalent to world space, where world
space utilizes the units used to represent items in the game
world.

[0114] As such, via the code of FIG. 6 the quantized form
vertex coordinate information can be converted to un-
quantized/model space coordinate form. Subsequently, each
of these un-quantized/model space coordinate form vertices
can be converted to horizontal/vertical (WV) screen coor-
dinates for projection and display to the screen. In general,
such conversion can involve the use of a projection matrix
and/or other projection machinery. Here, such conversion to
HN screen coordinates will now be discussed with reference
to the illustrative code of FIG. 7. To facilitate discussion, the
illustrative code of FIG. 7 operates with respect to a sim-
plified projection wherein: a) the camera is pointed along the
Y axis; b) the unrotated model is positioned along the Y axis;
¢) projection is to a screen with 640x480 resolution; and d)
a 60 degree FOV is used.

[0115] At lines 701 and 703, ScreenPixelWidth is set to
640 and ScreenPixelHeight is set to 480, consistent with the
noted 640x480 screen resolution. Then at line 705 FOV is
set to 60 degrees, consistent with the noted 60 degree FOV.
At line 707, ScreenPixelHeight is set at line 703 and FOV
as set at line 705 are applied as shown to set Projscale.
[0116] Next discussed is for-each loop 709, which
executes the lines of its corresponding code block with
respect to each X/Y/Z tuple of the un-quantized/model space
form vertex coordinate information, generated via the code
of FIG. 6. In lines 711-715, ModelVertex.X, Model Vertex.Y,
and ModelVertex.Z correspond, respectively, to the un-
quantized/model space coordinates of the particular X/Y/Z
tuple which is currently being visited according to the
for-each loop. Also in lines 711-715, DistToModel can
correspond to the distance from the camera to the origin of
the nearest triangle in the model. At line 711 DistToModel
and ModelVertex.Y are applied as shown to set VertexDis-
tance. Then, at line 713 ScreenPixelWidth, ProjScale, Mod-
el.Vertex.X, and VertexDistance are applied as shown to
generate the H value for the particular X/Y/Z tuple which is
currently being visited according to the for-each loop. Like-
wise, at line 715 ScreenPixelHeight, ProjScale, Model.
Vertex.Z, and VertexDistance are applied as shown to gen-
erate the V value for the particular X/Y/Z tuple which is
currently being visited according to the for-each loop. As
such, via execution of the code of FIG. 7, the un-quantized/
model space coordinate form vertices generated via execu-
tion of the code of FIG. 6 can be converted to horizontal/
vertical (H/V) screen coordinates for projection to the
screen, thus achieving a 3D to 2D mapping. Subsequently,

Jun. 23, 2022

operations can be performed to project corresponding vertex
interconnection lines to the screen, thereby displaying the
corresponding triangles. It is noted that the discussed opera-
tions regarding interpolated LOD display can, for example,
be performed at run-time.

[0117] As discussed, the interpolated LOD operations can
cause model vertices to become equivalent in value/position
in space. As such, a given interpolated LOD can, in terms of
vertex positional data, exhibit a loss of precision relative to
the original model. Further, display of an interpolated LOD
to the screen can involve sorting triangles along the Z/dis-
tance-from-camera axis in order to determine the relative
front-back positioning of the various triangles which are to
be displayed (e.g., determining whether a given triangle
should be placed in front of or in back of a second triangle).
Under certain circumstances, the loss of precision in terms
of vertex positional data—and in particular loss of precision
in terms of Z coordinate vertex positional data—can lead to
difficulties when performing the sorting. Such sorting diffi-
culties can visually manifest themselves as visual anomalies
including Z-fighting (e.g., with two triangles rapidly
exchanging front-back positioning relative to one another.
According to various embodiments, such sorting difficulties
(and resultant visual anomalies) can be avoided by utilizing
full-precision 7 coordinate vertex positional data when
performing the sorting. Such full-precision Z coordinate
vertex positional data can be obtained by accessing data
associated with the full-precision/original model. Where
such sorting is performed by a renderer, the full-precision Z
coordinate vertex positional data can be provided to the
renderer. As another example, Z-Bias approaches can be
employed.

Example LOD Operations

[0118] Via the illustrative example of FIGS. 2A-3D, an
ordered vertex list, an ordered triangle list, and an LOD table
are built. The ordered triangle list 319, the ordered vertex list
321, and the LOD table 323 show these lists and this table
subsequent to processing of all distinct LODs of that illus-
trative example. Then, discussed with reference to FIG. 4 is
the calculation of a fLOD value. Further, discussed in
connection with FIG. 5 is the generation of an interpolated
LOD, for the circumstance where such calculation of fLOD
yields a non-whole-number value. Such generation can yield
vertex coordinate information which is in quantized form.
Discussed in connection with FIG. 6 are operations which
can, for instance, convert such interpolated LOD vertex
coordinate information from quantized form to un-quan-
tized/model space coordinate form. And, discussed in con-
nection with FIG. 7 are operations which can convert such
un-quantized/model space coordinate form vertices to H/V
screen coordinates for projection and display to the screen.
[0119] Building upon this, discussed now in connection
with FIGS. 8A-8C are example LLOD operations which
extend the illustrative example of FIGS. 2A-3D.

[0120] Turning to FIG. 8A, shown is an example where
Dist, as discussed above with respect to line 409 of FIG. 4,
has a value of 1900 (801). Then, performing the operations
of FIG. 4 with respect to this value of Dist results in a {L.OD
value of 2.092 (803). Also, proceeding onward to the opera-
tions of FIG. 5 results in: a) an iLOD value of 2 (805); b) a
fracLOD value of 0.092 (807); ¢) a PrecisionMaskA value of
11111100b (809); and d) a PrecisionMaskB value of
11111000b (811). Further still, as discussed the operations of

US 2022/0198752 Al

FIG. 5 result in quantized interpolated versions of the X/Y/Z
coordinates of each vertex of the model (see, for instance,
lines 523-527 of for-each loop 509 of FIG. 5). The quantized
interpolated coordinates for the example of FIG. 8A are
shown at list 813. In particular, list 813 shows these quan-
tized interpolated versions in quantized binary form and
quantized decimal form. Also shown in list 813 are the
corresponding interpolated un-quantized/model space coor-
dinate versions.

[0121] Subsequent to the operations of FIG. 6 in which the
quantized interpolated versions of the coordinates are con-
verted to un-quantized/model space coordinate form, the
operations of FIG. 7 are performed to convert these X/Y/Z
coordinate values to HN form. The result of these FIG. 7
operations is shown in list 815. Subsequently, operations of
the sort discussed above can be performed to determine
which triangles have collapsed. The result of such determi-
nation is shown in list 817, which shows that none of
triangles 0-3 have collapsed for the example of FIG. 8A.
Also shown in FIG. 8A are elements 819 and 821, reflecting
that the DistinctL.OD2 includes 8 vertices (i.e., vertices 0-7)
and 4 triangles (i.e., triangles 0-3).

[0122] FIG. 8B shows an example similar to that of FIG.
8A, but with Dist having a value of 2100 (823). Flowing
from Dist having a value of 2100, f{LOD is determined to
have a value of 2.247 (825), iLOD is again determined to
have a value of 2 (827), and fracL.OD is determined to have
avalue 0f 0.247 (829). Also, PrecisionMaskA once again has
a value of 11111100b (831) and PrecisionMaskB once again
has a value of 11111000b (833). Further according to the
example of FIG. 8B, the quantized interpolated versions of
the vertices are determined according to the operations of
FIG. 5 to be as shown in list 835. Considering lines 523-527
of FIG. 5, the VertexB portions of the weighted sums—that
is to say the portions which reflect the application of
PrecisionMaskB—contribute more heavily than was the
case for the example of FIG. 8A. Such is in keeping with the
FIG. 8B fLLOD value of 2.247 being closer to 3 than was the
FIG. 8A {L.OD value of 2.092.

[0123] Subsequently, the operations of FIG. 6 are per-
formed to convert the coordinate values of list 835 to
un-quantized/model space coordinate form. Then, these
coordinate values are converted to H/V form as shown in
table 837. Then, considering the data of list 837 to determine
which triangles have collapsed provides results shown in
table 839. Here, it can be seen that for the example of FIG.
8B triangle 3 has collapsed, due to vertex 5 and vertex 7
having become equivalent in value/position in space.
[0124] Then, FIG. 8C shows an example similar to that of
FIGS. 8A and 8B, but with Dist having a value of 2400
(841). Flowing from Dist having a value of 2400, f{LOD is
determined to have a value of 2.451 (843), iLOD is again
determined to have a value of 2 (845), and fracL.OD is
determined to have a value of 0.451 (847). Also, Precision-
MaskA once again has a value of 11111100b (849) and
PrecisionMaskB once again has a value of 11111000b (851).
Also according to the example of FIG. 8C, the quantized
interpolated versions of the vertices are determined accord-
ing to the operations of FIG. 5 to be as shown in list 853.
Considering lines 523-527 of FIG. 5, the VertexB portions of
the weighted sums contribute even more heavily than was
the case for the example of FIG. 8B. Such is in keeping with
the FIG. 8C fLLOD value of 2.451 being even closer to 3 than
was the FIG. 8B fLOD value of 2.247.

Jun. 23, 2022

[0125] Subsequently, the operations of FIG. 6 are per-
formed to convert the coordinate values of list 853 to
un-quantized/model space coordinate form. Then, these
coordinate values are converted to H/V form as shown in
table 855. Further, considering the data of list 855 to
determine which triangles have collapsed provides results
shown in table 857. Here, it can be seen that for the example
of FIG. 8C triangles 2 and 3 have both collapsed. In
particular, triangle 2 has collapsed due to vertices 0 and 3
having become equivalent in value/position in space, while
triangle 3 has collapsed due to vertices 1 and 7 having
become equivalent in value/position in space.

[0126] As such, the examples of FIGS. 8A-8C demon-
strate that that interpolated L.ODs generated by way of the
approaches discussed herein allow for smooth transitions
between distinct LODs. Further considering the example of
FIGS. 8A-8C it is observed that although small triangles in
models can tend to collapse as they are drawn farther from
the camera, transitionally displaying interpolated LODs
generated according to the approaches discussed herein can
allow for smoothing of triangle collapses as the model
moves farther from the camera.

[0127] Further to the noted smooth transitions between
distinct LODs, various benefits can accrue via the
approaches discussed herein. For example, as discussed, the
LOD operations can include: a) distinct LOD generation
operations; b) fL.OD calculation operations; ¢) interpolated
LOD generation operations; and d) distinct LOD/interpo-
lated LOD display operations. Of these, the distinct LOD
generation operations can be the most processing-intensive.
Then, as noted, the distinct LOD generation operations can
be performed at a pre-processing stage, while the other
operations can be performed at run-time. As such, by
configuring LLOD operations such that the most processing
intensive operations are performed ahead of runtime, a
run-time speed advantage can be realized.

[0128] As another example, the CLOD approaches laid
out herein enjoy reduced visual artifacts, compared to other
CLOD approaches. For example, according to the
approaches discussed herein, it is in model space/world
space—rather than in screen space—that determination is
made that vertices have collapsed (i.e., become equivalent in
value/position in space), and that triangles have collapsed.
This can prevent the model from changing shape depending
on where it is on the screen.

[0129] As another example benefit, consider those vertices
and triangles that collapse at for a given not-most-detailed
distinct LOD or interpolated LOD which is displayed in
connection with a calculated fL.OD value corresponding to
a given camera distance. According to the functionality
discussed herein, such vertices and triangles would anyway
have collapsed at that camera distance in terms discernable
screen display had the model been displayed at its most
detailed LOD. As such, the same visual quality as displaying
the most detailed LOD can be realized, while at the same
time reaping the processing savings of displaying the not-
most-detailed distinct LOD or interpolated LOD. Further,
according to the functionality discussed herein, the normal
vectors of a given vertex can be the same across all distinct
LODs/interpolated LODs. From this, benefits including but
not limited to reduced lighting anomalies at different distinct
LODs/interpolated LODs can accrue. Further still, as refer-
enced hereinabove the model geometry alteration which
occur in connection with the generation of distinct LODs

US 2022/0198752 Al

and interpolated L.ODs is, in general, limited to removing
collapsed triangles with respect to less detailed ones of such
LODs. From this, benefits including but not limited to
eliminating the need to: a) remap texture UV coordinates; b)
alter vertex normals; and c) change materials can be real-
ized.

Vertex Alignment

[0130] Invarious embodiments, when lower quality LODs
are displayed for a model, many of the model’s vertex
positions can move slightly in model space relative to their
positions within the corresponding highest quality LOD. In
part, this is because more vertex position LSBs are masked
out for these lower quality LODs. The vertex movement
generally results in a shift of less than one pixel on-screen.
However, when two or more CLOD models (i.e., models
implemented using the CLOD approaches discussed herein)
are adjacent to each other, less than one pixel movement can
cause tiny gaps that allow virtual light to pass through. This
passage of virtual light can result in visual artifacts—such as
background virtual lighting being visible between the two
abutted CLOD models or virtual shadows being seen with
gaps between the darkness.

[0131] However, not all CLOD vertex positions move
when selecting lower quality LODs. As discussed above, a
given one of the set of bitmasks can have all bits set to 1
except for the m least significant bits (LSBs). Those m L.SBs
can be set to 0. Where model vertices are quantized into n-bit
unsigned integers, m can range from 0 to j, where j=n.
Therefore, any X, Y, or Z vertex positions with the lower j
bits initially set to zero remain stable across all LODs.
Iustratively, the system can select j as 5. Here, the mask
with the largest quantity of zero-valued LSBs to be
employed can be 11100000b (i.e., a mask with five zero-
valued LSBs). Accordingly, where the X, Y, and/or Z coor-
dinate values of a given vertex position have only zero-
valued bits within their five LSBs, this vertex position can
be unaffected by any of the masks applied in those coordi-
nate directions. As one example, where the vertex position
has the X, Y, Z coordinate value [11100000b, 10000000b,
01100000b], respectively, this vertex position can be unaf-
fected in the X, Y, and Z directions by any of the masks
applied. As another example, where the vertex position has
the X, Y, Z coordinate values [11111000b, 10000000b,
01111000b], this vertex position can be unaffected in the Y
direction by any of the masks applied.

[0132] In various embodiments, to reduce or eliminate
gaps between two abutted CLOD models, the models can be
designed in such a way that the abutment point on each
model aligns with these non-moving vertex positions. For
example, suppose model vertices are quantized into 16-bit
unsigned integers and the system has selected j as eleven.
Here, if a wall of a CLOD model butts up against one or
more other CLOD models along the Y-Z plane, the wall can
be designed to use the non-moving X-axis positions of
0x0800 (0000100000000000b) on one edge and OxF800
(1111100000000000b) on the other edge. These X-position
values can be set by a graphic generation process (or by an
artist). As an alternative, these X-position values can be set
by scaling the graphic generation process’s (or artist’s)
original dimension during a data-build process.

Jun. 23, 2022

[0133] In the foregoing, using 0x0800 for the lower edge
value instead of 0x0000 can allow some model details (e.g.,
a window placed on the outer surface of the wall) to extend
past the abutment point.

[0134] Alternatively, a lower edge vertex position X value
such as 0xO7FF (0000011111111111b) can be used instead of
0x0800 as discussed previously. By using 0x07FF, vertex
movement arising from mask application on that edge can
expand from the center (0x8000; 1000000000000000b).
This is because masking out vertex position bits for lower
quality LODs moves the vertex position towards zero. Such
expansion can, in some embodiments, be used to mask small
gaps between models.

[0135] Explored now in greater detail will be strategies for
constructing models (e.g., models that use component
pieces) in a manner that reduces visual artifacts that might
otherwise occur when using the CLOD approaches dis-
cussed herein. Although the following description uses
exemplary models which depict buildings in a virtual world,
it is to be understood that the techniques are applicable to
other models as well.

[0136] As referenced, when using the CLOD approaches
discussed herein, many vertices in a model can move
slightly when different LODs are selected, but there are
some vertex positions that remain constant for all LODs. In
general, the strategies described herein rely on constructing
and connecting component pieces along these constant ver-
tex positions. In the discussion that follows, these vertex
positions that are constant for all LODs will be referred to
as “snap points.”

[0137] When placing model components at or along snap
points, in some embodiments, the graphic generation pro-
cess does not consider all snap points to be available for
model component placement. In these embodiments the
graphic generation process can instead place model compo-
nents in agreement with a minimum inter-snap point dis-
tance. This inter-snap point distance can be termed a snap
point dimension. When selecting a snap point dimension, the
factors of the selection include versatility and draw perfor-
mance. A smaller snap point dimension can allow abutting
model components to have more positional choices when
drawing seams, while a larger snap point dimension can
yield improved draw performance. Since CLOD LODs are
not to have less resolution than the snap point dimension,
smaller snap point dimensions limit the number of CLOD
LODs. As just an example, in virtual large cities having a
large number of CLOD LODs can allow a large quantity
buildings in the distance (i.e., far from a virtual camera) to
reduce to very few polygons. This can significantly improve
draw performance.

[0138] The graphic generation process has great latitude in
selecting the length for the snap point dimension. However,
convenient snap point dimensions can include multiples of
centimeters, such as 2.0 m, 1.0 m, 0.5 m and 0.25 m. As
further examples, convenient snap point dimensions can
include multiples of 2” millimeters, such as 2048 mm, 1024
mm, 512 mm and 256 mm. Since snap point dimensions are,
in various embodiments, converted to 2” units, this can allow
dimensions in Maya (and other 3D graphics software) to be
the same as the dimensions stored in the' vertex buffer
utilized in connection with the operations discussed herein.
[0139] Turning to selection of a world space resolution, it
is noted that, according to the approaches discussed herein,
vertex positions can be stored as quantized n-bit unsigned

US 2022/0198752 Al

integers (e.g., 16-bit integers) in the CLOD vertex buffer.
Accordingly, in some embodiments, the world space reso-
Iution is defined by the maximum component size supported
by CLOD, with world space resolution being a 2n multiple
of the snap point dimension. As one example where the snap
point dimension is 1.0 m, the corresponding world space
resolution can be ~2 mm (as 1.0 m/512=1.953 mm) with a
maximum component size of ~128 m. As another example
where the snap point dimension is 10 m, the world space
resolution can be ~0.5 mm (as 1.0 m/2048=0.488 mm) with
a maximum component size of ~32 m.

[0140] There are various ways to lay out the dimensions of
the snap points and the world space resolution. However, for
the examples of the remainder of this section the following
dimensions will be used:

[0141] 16-bit components for storing CLOD vertex
X/Y/Z positions.

[0142] 0.5 m (500 mm/19.685") snap points (e.g., for
use by the graphic generation process, and/or in con-
nection with Maya or other 3D graphics software)

[0143] snap points scaled to 512 units in CLOD vertex
X/Y/Z positions

[0144] CLOD vertex positions where the bottom 9 bits
are all zero remain constant for all LODs

[0145] ~1 mm world space resolution. (500 mm/512=0.
977 mm)

[0146] 10 CLOD LODs

[0147] ~64 m (~210") max dimension for component
pieces

[0148] The graphic generation process can use an appli-
cation programming interface (API), inter-process commu-
nication, and/or another mechanism to inform the CLOD
data build tools of the intended snap point dimension and
world space resolution. As just some examples, the graphic
generation process can so inform the CLOD data build tools
on a per-model basis or once for a collection of models.
Also, it is noted that where finer-grained snap points and/or
additional CLOD LODs are desired, different dimensions
can be used. Under such circumstances the discussed factors
relating to visual artifacts can still remain, but at another
scale.

[0149] In various embodiments, when model components
are constructed by the graphic generation process and/or in
connection with 3D graphics software (e.g., Maya), place-
ment of vertices on snap point coordinates can be performed
accurately where a vertex is intended to be used as a snap
point. As just an example, a vertex position can be within %2
of the world space resolution in order for the CLOD
approaches discussed herein to treat the vertex as a snap
point, according to some embodiments. Using the above-
listed example snap point dimension and world space reso-
Iution, a vertex can be positioned within 0.488 mm to be
treated as a snap point. In certain embodiments a CLOD data
process can act to force positioning errors (e.g., larger
positioning errors) to a closest corresponding snap point.
[0150] The CLOD approaches discussed herein can, for
example, number LODs starting at LODO, the highest reso-
Iution LOD. LODO can be stored at the world space reso-
Iution that was passed to the CLOD data build tools (i.e.,
0.977 mm in the above example dimensions). Each addi-
tional CLOD LOD can, as an example, be drawn at a twice
coarser resolution than the preceding resolution. Illustra-
tively, using the above example dimensions LODS can be
drawn at 31.25 mm (~1.25") resolution.

Jun. 23, 2022

[0151] A primary component for constructing models
depicting buildings can be the wall component. Generally,
the wall component cam be a rectangle aligned to snap
points. Further, the wall component can optionally include
overhangs, ornamentation, and/or other connected features.
A wall can be modelled as a solid rectangle, or be modelled
with cutouts for windows, doors, or other such features.
Designing walls with cutouts can call for the cutouts to be
aligned to snap point coordinates.

[0152] FIG. 9 shows a solid wall that is 8 snap points wide
by 6 snap points tall. Turning to FIG. 9, a top view 901, a
front view 903, and a side view 905 for the wall is shown.
The wall is 4 m wide by 3 m tall using the example snap
point dimensions given above. The isolated pixels (e.g.,
pixel 903, pixel 905, and pixel 907) indicate the locations of
the snap points.

[0153] Not all wall components of a building need to be
the same size. As just an illustration, some wall sections can
be 4 m wide, while others can be 2 m or 3 m wide. However,
according to various embodiments their dimensions can be
restricted to integer multiples of the snap point dimension.
[0154] In embodiments where not all wall components
have the same dimensions, there is the possibility that
although neighboring wall sections align along snap points,
the corners of certain wall sections do not align with a
neighboring wall’s corner.

[0155] FIG. 10 shows an example of this phenomenon. In
FIG. 10, vertices 1001, 1003, and 1005 have a potential to
generate a T-Junction and therefore an open seam. As just an
example, to address this potential problem the wall rectangle
can be tessellated so that all snap points are triangle vertices,
or just that all potential abutment corners are tessellated. As
another example, where it is determined that the T-junctions
do not pose a visual problem, the wall rectangle can be
tessellated with two triangles. This simpler tessellation can
yield benefits including reducing memory requirements and
improving draw performance.

[0156] In some embodiments, the system can determine
whether there is a need to address the potential problem
depicted by FIG. 10. For instance, such determination can
ascertain the extent to which the phenomenon depicted by
FIG. 10 is captured by a virtual camera viewing the wall. It
is observed that the just-discussed potential abutment prob-
lem can, under certain circumstance, also be a potential
problem when not using the CLOD approaches discussed
herein.

[0157] Window components—which are often used in
connection with models depicting buildings—can yield
CLOD-related issues which will now be discussed. Similar
issues can arise in connection with other components such as
doors and cornices. When the graphic generation process
places windows on or against solid wall components, the
windows do not necessarily need to strictly align on snap
points in the wall. However, a window component can
exhibit different behavior depending on how it is con-
structed. Since non-snap point vertices in a window model
can move slightly for different CLOD LODs, the design of
a window component by the graphic generation process (or
by using 3D graphics software) can take this movement into
account. It is unlikely for all window components of a given
model to have outer dimensions that align with a practical
snap point dimension. As an illustration, a smaller snap point
dimension of 0.5 m can still be restrictive on the possible
widths and heights for windows.

US 2022/0198752 Al

[0158] FIG. 11 shows a top view 1101, a face view 1103,
and a side view 1105 of a possible design of a window, using
a wireframe view of the window. In FIG. 11, the isolated
pixels (e.g., pixel 1107) show the snap points, the line pixels
1109 show the alignment to a solid wall, line pixels 1111
depict the window frame, and line pixels 1113 depict the
window glass.

[0159] According to various embodiments, it can be
important for the graphic generation process to achieve snap
point alignment between a window and an underlying wall.
This is because where the back of the window is not created
on a snap point, the window can move into and out from the
wall when a lower-quality LOD is selected in connection
with the CLOD approaches discussed herein.

[0160] According to various embodiments, when drawn
on screen CLOD LODs 0 through 4 can look generally like
the depiction of FIG. 11. However, when LODs lower in
quality than LOD 4 are drawn, the vertices of the window
can move sufficiently such that non-snap point vertices are
drawn at significantly different world space coordinates.
FIG. 12 depicts how the non-snap point vertices of the
window model move in world space for CLOD LOD 6. FIG.
13 depicts how the non-snap point vertices of the window
model move in world space for CLOD LOD 8. In these
figures, line pixels 1201 show the outline of the window as
originally drawn by the graphic generation process and/or in
connection with 3D graphics software. The movement of
vertex position according to the masking discussed herein is
towards lower valued coordinates. As such, the window in
FIGS. 12 and 13 appears to be moving down and to the left,
when looking at the front of the window.

[0161] Generally, the movement of vertices in world space
is not noticeable on screen. One reason for this is that,
according to various embodiments, lower quality CLOD
LODs are typically only selected by the system when such
movement represents less than a 1-pixel movement on
screen. However, when this movement causes, as just one
illustration, a sub-pixel spacing between building compo-
nents, various visual artifacts can appear. As examples, a
background color can show in the seam, or the sub-pixel
spacing can cause a shadow anomaly. Also, if the back of
window is not aligned to a snap point, a gap can appear
between the wall and the back of window. This can poten-
tially cause a visible artifact if the camera or shadow
direction ran along the face of the wall. However, by having
the graphic generation process follow the approaches dis-
cussed herein (e.g., having the graphic generation process
design models so that the abutment points on adjacent
models align with snap points), artifacts such as these can be
reduced or eliminated.

[0162] The orientation selected for a model component
(e.g., a building component) by the graphic generation
process and/or in connection with 3D graphics software can
be important when the component is used in connection with
the CLOD approaches discussed herein. FIG. 14A depicts a
window model similar to the window model depicted by
FIG. 11, but differing insofar as having been designed with
increasing coordinate positions for vertices that are farther
forward of the wall. Since lower quality LODs move vertex
positions to lower values, the different model orientation of
FIG. 14A results in the vertices of lower quality LODs
getting closer to the wall instead of farther from the wall.
[0163] FIG. 14B depicts how non-snap point vertices of
the window model of FIG. 14A move in world space

Jun. 23, 2022

coordinates for CLOD LOD 6. FIG. 14C depicts now the
non-snap point vertices of the window model move in world
space for CLOD LOD 8. Akin to FIGS. 11-13, in FIGS.
14A-14C line pixels 1409 show alignment to a solid wall,
line pixels 1411 depict the window frame, and line pixels
1413 depict the window glass. FIG. 14B shows how vertex
position movement for CLOD LOD 6 has caused vertices to
collapse towards the wall. In FIG. 14B, the glass 1413 has
moved far enough towards the wall 1409 that it could
potentially cause z-fighting with the wall. FIG. 14C shows
how vertex position movement for CLOD LOD 8 has caused
the entire model to collapse towards the wall 1409. Under
the circumstance of CLOD LOD 8, the glass 1413 and the
frame 1411 can potentially cause z-fighting with the wall
1409. However, by having the graphic generation processes
appropriately select model component orientation, the noted
artifacts can be reduced or avoided.

Unique Positions and CLOD Vertex Transform Cache

[0164] Hereinabove, vertices have generally been dis-
cussed in connection with their position coordinate values.
However, in certain embodiments additional data can be
associated with a vertex. For example, a given data element
(e.g., an object or a struct) can include vertex position
coordinate values, color data, texture UV data, and/or light-
ing normal data.

[0165] When lower quality LODs are generated by mask-
ing out the LSBs of the vertex positions, many of the
resulting original vertex positions can come to share the
same vertex position at the lower quality LODs. In this way,
for a lower quality LOD there can be multiple vertices (e.g.,
vertex data elements) that hold the same vertex position
values due to the masking, but differ in terms of color,
texture UV, and/or lighting normal data.

[0166] In certain embodiments, such masking-resultant
common vertex position values can be leveraged to realize
processing, storage, and other savings.

[0167] In particular, when transforming vertex positions
(e.g., transforming to world space and/or to clip space), all
of the vertices for lower quality LODs that share the same
vertex position values can use the same vertex transforma-
tion. As just an example, in order to facilitate this all of the
triangles that use a vertex with a common position can
reference a single vertex as a stand-in for the other vertices
with the same position. This single vertex can, for instance,
be referred to as a “unique position.” The remaining vertices
with the same position do not need to be transformed.
Triangles that use unique position vertices can store a
reference to the original vertex and a reference to a unique
position vertex.

[0168] Models that are not subject to CLOD processing
can also have multiple vertices (e.g., vertex data elements)
that hold the same vertex position values, but hold different
other data (e.g., lighting normal or texture UV data). How-
ever, this vertex position redundancy can be multiplied when
LSB vertex position bit-masking of the sort discussed is
performed. As such, the discussed functionality of utilizing
the same vertex transformation for lower quality LODs that
share the same vertex position values can be particularly
beneficial.

[0169] To further optimize the performance gain of unique
positions, in certain embodiments a vertex transform cache
can be used to transform the vertex positions as few times as
possible. In particular, the vertex position buffer can be

US 2022/0198752 Al

reordered to place the unique position vertices in each LOD
together. Further, a list of transform commands can be
generated that inform a transform process.

[0170] These commands can inform the transform process
to transform multiple groups of unique position vertices,
place those transformed vertices into a cache, and then
process a number of triangles that are guaranteed to only
reference transformed vertices present in the cache. Each
subsequent transform command can transform further
groups of vertices, and can replace other groups of vertices
in the cache. Some of the transformed groups can remain in
the cache while further triangles are processed.

[0171] Because, in various embodiments, the unique posi-
tion vertices are grouped together in each LOD, not all of the
unique position vertices for the higher quality LODs are
together. Instead, they are spread out among the lower
quality LODs. As such, the structure of the CLOD vertex
transform cache can reduce the number of vertex transforms
that are performed for the higher quality LODs.

Hardware and Software

[0172] According to various embodiments, various func-
tionality discussed herein can be performed by and/or with
the help of one or more computers. Such a computer can be
and/or incorporate, as just some examples, a personal com-
puter, a server, a smartphone, a system-on-a-chip, and/or a
microcontroller. Such a computer can, in various embodi-
ments, run Linux, MacOS, Windows, or another operating
system.

[0173] Such a computer can also be and/or incorporate one
or more processors operatively connected to one or more
memory or storage units, wherein the memory or storage
may contain data, algorithms, and/or program code, and the
processor or processors may execute the program code
and/or manipulate the program code, data, and/or algo-
rithms. Turning to FIG. 15, the CLOD system 100 can be
implemented between a network 1510 (e.g., cloud) com-
prising a server 1515 (e.g., a single server machine, multiple
server machines, and/or a content delivery network) com-
municating with a plurality of player consoles 1501 (shown
as any number of player consoles 1501A-1501N). A player
console 1501 can be any system with a processor, memory,
capability to connect to the network, and capability of
executing gaming software in accordance with the disclosed
embodiments. A hardware and network implementation suit-
able for the disclosed system is described in greater detail in
commonly assigned U.S. Pat. No. 9,901,831, entitled “Sys-
tem and Method for Network Gaming Architecture,” incor-
porated herein by reference.

[0174] The player console 1501A is shown in further
detail for illustration purposes only. As shown, the player
console 1501 can include any number of platforms 1502 in
communication with an input device 1503. For example, the
platform 1502 can represent any biometrics, motion picture,
video game, medical application, or multimedia platform as
desired. According to one embodiment disclosed herein, the
platform 1502 is a gaming platform for running game
software and various components in signal communication
with the gaming platform 1502, such as a dedicated game
console including an XBOX One® (or XBOX Series X or
S) manufactured by Microsoft Corp., PLAYSTATION 4 (or
5)® manufactured by Sony Corporation, and/or WII U® (or
Switch®) manufactured by Nintendo Corp. In other embodi-
ments, the platform 1502 can also be a personal computer,

Jun. 23, 2022

laptop, tablet computer, or a handheld mobile device. One or
more players can use a gaming platform to participate in a
game. Multiple gaming platforms may be linked together
locally (e.g., via a LAN connection), or via the network 1510
(e.g., the Internet or other communication networks).
[0175] The network 1510 can also include any number of
wired data networks and/or any conventional wireless com-
munication network, for example, radio, Wireless Fidelity
(Wi-Fi), cellular, satellite, and broadcasting networks.
Exemplary suitable wireless communication technologies
used with the network 1510 include, but are not limited to,
Global System for Mobile Communications (GSM), General
Packet Radio Service (GPRS), Code Division Multiple
Access (CDMA), Wideband CDMA (W-CDMA),
CDMA2000, IMT Single Carrier, Enhanced Data Rates for
GSM Evolution (EDGE), Long-Term Evolution (LTE), LTE
Advanced, Time-Division LTE (TD-LTE), High Perfor-
mance Radio Local Area Network (HiperLAN), High Per-
formance Radio Wide Area Network (HiperWAN), High
Performance Radio Metropolitan Area Network (Hiper-
MAN), Local Multipoint Distribution Service (LMDS),
Worldwide Interoperability for Microwave Access
(WIMAX), ZigBee, Bluetooth, Flash Orthogonal Fre-
quency-Division Multiplexing (Flash-OFDM), High Capac-
ity Spatial Division Multiple Access (HC-SDMA), iBurst,
Universal Mobile Telecommunications System (UMTS),
UMTS Time-Division Duplexing (UMTS-TDD), Evolved
High Speed Packet Access (HSPA+), Time Division Syn-
chronous Code Division Multiple Access (TD-SCDMA),
Evolution-Data Optimized (EV-DO), Digital Enhanced
Cordless Telecommunications (DECT) and others.

[0176] The platform 1502 typically is electrically coupled
to a display device 1504. For example, the display device
1504 can be an output device for presentation of information
from the platform 1502 and includes a television, a computer
monitor, a head-mounted display, a broadcast reference
monitor, a medical monitor, the screen on a tablet or mobile
device, and so on. In some embodiments, the platform 1502
and/or the display device 1504 is in communication with an
audio system (not shown) for presenting audible informa-
tion.

[0177] InFIG. 15, the platform 1502 also is electrically or
wirelessly coupled to one or more controllers or input
devices, such as an input device 1503. In some embodi-
ments, the input device 1503 is a game controller and
includes keyboards, mice, gamepads, joysticks, directional
pads, analog sticks, touch screens, and special purpose
devices (e.g., steering wheels for driving games and/or light
guns for shooting games). Additionally and/or alternatively,
the input device 1503 includes an interactive-motion-track-
ing system, such the Microsoft Xbox One KINECT® device
or the Sony PlayStation® 4 (or 5) Camera, for tracking the
movements of a player within a 3-dimensional physical
space. The input device 1503 provides data signals to the
platform 1502, which processes the data and translates the
player’s movements on the display device 1504. The plat-
form 1502 can also perform various calculations or opera-
tions on inputs received by the sensor and instruct the
display to provide a visual representation of the inputs
received as well as effects resulting from subsequent opera-
tions and calculations.

[0178] In one embodiment, the platform 1502 can be
connected via the network 1510 to the server 1515 that can
host, for example, multiplayer games and multimedia infor-

US 2022/0198752 Al

mation (e.g., scores, rankings, tournaments, and so on).
Users can access the server 1515 when the platform 1502 is
online via the network 1510. Reference herein to the plat-
form 1502 can include gaming platforms executing video
game software or game software (e.g., computer program
products, tangibly embodied in a computer-readable storage
medium). Additionally and/or alternatively, references to the
platform 1502 can also include hardware only, or a combi-
nation of hardware and/or software. In some embodiments,
the platform 1502 includes hardware and/or software, such
as a central processing unit, one or more audio processors,
one or more graphics processors, and one or more storage
devices.

[0179] In some embodiments, a selected player console
1501 A-N can execute a video game that includes animation
of one or more virtual players in a virtual world and at least
one non-player object (NPC). NPCs can include, for
example, cars, boats, aircrafts, and other vehicles in the
virtual world. The virtual world can include game spaces
with these NPCs and player characters that are animated
using the systems and methods described herein.

RAMIFICATIONS AND SCOPE

[0180] The disclosed embodiments are susceptible to vari-
ous modifications and alternative forms, and specific
examples thereof have been shown by way of example in the
drawings and are herein described in detail. It should be
understood, however, that the disclosed embodiments are
not to be limited to the particular forms or methods dis-
closed, but to the contrary, the disclosed embodiments are to
cover all modifications, equivalents, and alternatives.
[0181] Although the description above contains many
specifics, these are merely provided to illustrate the inven-
tion and should not be construed as limitations of the
invention’s scope. Thus, it will be apparent to those skilled
in the art that various modifications and variations can be
made in the system and processes of the present invention
without departing from the spirit or scope of the invention.
[0182] In addition, the embodiments, features, methods,
systems, and details of the invention that are described
above in the application may be combined separately or in
any combination to create or describe new embodiments of
the invention.
We claim:
1. A computer-implemented method for rendering con-
tinuous levels of detail for computer graphic models, com-
prising:
generating, by a computing system, one or more distinct
levels of detail for a computer graphic model;

calculating, by the computing system, one or more float-
ing point level of detail values for the computer graphic
model, wherein the floating point level of detail values
regard viewing of the computer graphic model; and

displaying, by the computing system, the computer
graphic model, wherein said display presents one of the
distinct levels of detail, or an interpolated level of
detail.

2. The computer-implemented method of claim 1,
wherein generating a distinct level of detail of said distinct
levels of detail comprises the computing system applying a
mask to vertex values of the computer graphic model,
wherein the mask alters precision of the vertex values.

3. The computer-implemented method of claim 2,
wherein generating the distinct level of detail comprises the

Jun. 23, 2022

computing system determining whether the mask applica-
tion has caused vertices of the computer graphic model to
become equivalent.

4. The computer-implemented method of claim 2,
wherein generating the distinct level of detail comprises the
computing system determining whether the mask applica-
tion has caused triangle collapse.

5. The computer-implemented method of claim 1, further
comprising:

removing, by the computing system, at least one collapsed

triangle with respect to at least one distinct level of
detail.

6. The computer-implemented method of claim 1, further
comprising:

quantizing, by the computing system, vertex values of the

computer graphic model into maskable forms.

7. The computer-implemented method of claim 1, further
comprising:

populating, by the computing system, with generation of

each of the distinct levels of detail, one or more of an
ordered triangle list or an ordered vertex list.

8. The computer-implemented method of claim 1,
wherein the calculation of the floating point level of detail
values utilizes one or more of a distance to a virtual camera,
a field of view, a screen resolution, a model scale, or a vertex
quantization extent.

9. The computer-implemented method of claim 1, further
comprising:

generating, by the computing system, the interpolated

level of detail, wherein the generation comprises per-
forming at least one of a mask application or a weighted
sum operation.

10. The computer-implemented method of claim 1,
wherein the display of the computer graphic model com-
prises the computing system performing at least one of
vertex dequantization or conversion to screen coordinates.

11. The computer-implemented method of claim 1, further
comprising:

determining, by the computing system, one or more

vertices of the computer graphic model to have com-

mon position values due to mask application; and
utilizing, by the computing system, at least one common

vertex transformation for the one or more vertices.

12. The computer-implemented method of claim 11,
wherein a vertex transformation cache is used.

13. The computer-implemented method of claim 1, fur-
ther comprising:

selecting, by the computing system, for the computer

graphic model, one or more vertices having positions
unaffected by mask application by the computing sys-
tem.

14. A non-transitory nonvolatile computer program prod-
uct comprising a processor-readable medium having a
sequence of instructions stored thereon, which, when
executed by the processor, causes the processor to execute
rendering of continuous levels of detail for computer graphic
models, the sequence of instructions comprising:

instructions for generating one or more distinct levels of

detail for a computer graphic model;

instructions for calculating one or more floating point

level of detail values for the computer graphic model,
wherein the floating point level of detail values regard
viewing of the computer graphic model; and

US 2022/0198752 Al

instructions for displaying the computer graphic model,
wherein said display presents one of the distinct levels
of detail, or an interpolated level of detail.

15. The non-transitory nonvolatile computer program
product of claim 14, wherein generating a distinct level of
detail of said distinct levels of detail comprises applying a
mask to vertex values of the computer graphic model,
wherein the mask alters precision of the vertex values.

16. The non-transitory nonvolatile computer program
product of claim 15, wherein generating the distinct level of
detail comprises determining whether the mask application
has caused vertices of the computer graphic model to
become equivalent.

17. The non-transitory nonvolatile computer program
product of claim 15, wherein generating the distinct level of
detail comprises determining whether the mask application
has caused triangle collapse.

18. The non-transitory nonvolatile computer program
product of claim 14, the sequence of instructions further
comprising:

instructions for removing at least one collapsed triangle

with respect to at least one distinct level of detail.

19. The non-transitory nonvolatile computer program
product of claim 14, the sequence of instructions further
comprising:

instructions for quantizing vertex values of the computer

graphic model into maskable forms.

20. The non-transitory nonvolatile computer program
product of claim 14, the sequence of instructions further
comprising:

instructions for populating, with generation of each of the

distinct levels of detail, one or more of an ordered
triangle list or an ordered vertex list.

21. The non-transitory nonvolatile computer program
product of claim 14, wherein the calculation of the floating
point level of detail values utilizes one or more of a distance
to a virtual camera, a field of view, a screen resolution, a
model scale, or a vertex quantization extent.

22. The non-transitory nonvolatile computer program
product of claim 14, the sequence of instructions further
comprising:

instructions for generating the interpolated level of detail,

wherein the generation comprises performing at least
one of a mask application or a weighted sum operation.

23. The non-transitory nonvolatile computer program
product of claim 14, wherein the display of the computer
graphic model comprises performing at least one of vertex
dequantization or conversion to screen coordinates.

24. The non-transitory nonvolatile computer program
product of claim 14, the sequence of instructions further
comprising:

instructions for determining one or more vertices of the

computer graphic model to have common position
values due to mask application; and

instructions for utilizing at least one common vertex

transformation for the one or more vertices.

25. The non-transitory nonvolatile computer program
product of claim 24, wherein a vertex transformation cache
is used.

26. The non-transitory nonvolatile computer program
product of claim 14, the sequence of instructions further
comprising:

Jun. 23, 2022

instructions for selecting, for the computer graphic model,
one or more vertices having positions unaffected by
mask application by the computing system.

27. A system for rendering of continuous levels of detail
for computer graphic models, the system comprising:

at least one processor; and

a memory storing instructions that, when executed by the

at least one processor, cause the system to perform:

generating one or more distinct levels of detail for a
computer graphic model;

calculating one or more floating point level of detail
values for the computer graphic model, wherein the
floating point level of detail values regard viewing of
the computer graphic model; and

displaying the computer graphic model, wherein said
display presents one of the distinct levels of detail, or
an interpolated level of detail.

28. The system of claim 27, wherein generating a distinct
level of detail of said distinct levels of detail comprises
applying a mask to vertex values of the computer graphic
model, wherein the mask alters precision of the vertex
values.

29. The system of claim 28, wherein generating the
distinct level of detail comprises determining whether the
mask application has caused vertices of the computer
graphic model to become equivalent.

30. The system of claim 28, wherein generating the
distinct level of detail comprises determining whether the
mask application has caused triangle collapse.

31. The system of claim 27, wherein the instructions,
when executed by the at least one processor, further cause
the system to perform:

removing at least one collapsed triangle with respect to at

least one distinct level of detail.

32. The system of claim 27, wherein the instructions,
when executed by the at least one processor, further cause
the system to perform:

quantizing vertex values of the computer graphic model

into maskable forms.

33. The system of claim 27, wherein the instructions,
when executed by the at least one processor, further cause
the system to perform:

populating, with generation of each of the distinct levels

of detail, one or more of an ordered triangle list or an
ordered vertex list.

34. The system of claim 27, wherein the calculation of the
floating point level of detail values utilizes one or more of
a distance to a virtual camera, a field of view, a screen
resolution, a model scale, or a vertex quantization extent.

35. The system of claim 27, wherein the instructions,
when executed by the at least one processor, further cause
the system to perform:

generating the interpolated level of detail, wherein the

generation comprises performing at least one of a mask
application or a weighted sum operation.

36. The system of claim 27, wherein the display of the
computer graphic model comprises performing at least one
of vertex dequantization or conversion to screen coordi-
nates.

37. The system of claim 27, wherein the instructions,
when executed by the at least one processor, further cause
the system to perform:

US 2022/0198752 Al

determining one or more vertices of the computer graphic
model to have common position values due to mask
application; and

utilizing at least one common vertex transformation for

the one or more vertices.

38. The system of claim 37, wherein a vertex transfor-
mation cache is used.

39. The system of claim 27, wherein the instructions,
when executed by the at least one processor, further cause
the system to perform:

selecting, for the computer graphic model, one or more

vertices having positions unaffected by mask applica-
tion by the computing system.

#* #* #* #* #*

19

Jun. 23, 2022

